460 research outputs found
Equivalence of volume and temperature fluctuations in power-law ensembles
Relativistic particle production often requires the use of Tsallis statistics
to account for the apparently power-like behavior of transverse momenta
observed in the data even at a few GeV/c. In such an approach this behavior is
attributed to some specific intrinsic fluctuations of the temperature in
the hadronizing system and is fully accounted by the nonextensivity parameter
. On the other hand, it was recently shown that similar power-law spectra
can also be obtained by introducing some specific volume fluctuations,
apparently without invoking the introduction of Tsallis statistics. We
demonstrate that, in fact, when the total energy is kept constant, these volume
fluctuations are equivalent to temperature fluctuations and can be derived from
them. In addition, we show that fluctuations leading to multiparticle power-law
Tsallis distributions introduce specific correlations between the considered
particles. We then propose a possible way to distinguish the fluctuations in
each event from those occurring from event-to-event. This could have
applications in the analysis of high density events at LHC (and especially in
ALICE).Comment: Revised version with new figure, footnotes and references adde
Nonextensive thermal sources of cosmic rays?
The energy spectrum of cosmic rays (CR) exhibits power-like behavior with a
very characteristic "knee" structure. We consider a possibility that such a
spectrum could be generated by some specific nonstatistical temperature
fluctuations in the source of CR with the "knee" structure reflecting an abrupt
change of the pattern of such fluctuations. This would result in a generalized
nonextensive statistical model for the production of CR. The possible physical
mechanisms leading to these effects are discussed together with the resulting
chemical composition of the CR, which follows the experimentally observed
abundance of nuclei.Comment: 16 pages, 3 figures, rewritten and updated version, to be published
in Centr. Eur. J. Phy
Phase-space dependence of particle-ratio fluctuations in Pb+Pb collisions from 20A to 158A GeV beam energy
A novel approach, the identity method, was used for particle identification
and the study of fluctuations of particle yield ratios in Pb+Pb collisions at
the CERN Super Proton Synchrotron (SPS). This procedure allows to unfold the
moments of the unknown multiplicity distributions of protons (p), kaons (K),
pions () and electrons (e). Using these moments the excitation function of
the fluctuation measure [A,B] was measured, with A and
B denoting different particle types. The obtained energy dependence of
agrees with previously published NA49 results on the related
measure . Moreover, was found to depend
on the phase space coverage for [K,p] and [K,] pairs. This feature most
likely explains the reported differences between measurements of NA49 and those
of STAR in central Au+Au collisions
Proton -- Lambda Correlations in Central Pb+Pb Collisions at sqrt(s_{NN}) = 17.3 GeV
The momentum correlation between protons and lambda particles emitted from
central Pb+Pb collisions at sqrt(s_{NN}) = 17.3 GeV was studied by the NA49
experiment at the CERN SPS. A clear enhancement is observed for small relative
momenta (q_{inv} < 0.2 GeV). By fitting a theoretical model, which uses the
strong interaction between the proton and the lambda in a given pair, to the
measured data a value for the effective source size is deduced. Assuming a
static Gaussian source distribution we derive an effective radius parameter of
R_G = 3.02 \pm 0.20$(stat.)^{+0.44}_{-0.16}(syst.) fm.Comment: 14 pages, 9 figures, submitted to Phys. Rev.
Production of deuterium, tritium, and He in central Pb+Pb collisions at 20A, 30A, 40A, 80A, and 158A GeV at the CERN SPS
Production of , , and He nuclei in central Pb+Pb interactions was
studied at five collision energies ( 6.3, 7.6, 8.8, 12.3, and
17.3 GeV) with the NA49 detector at the CERN SPS. Transverse momentum spectra,
rapidity distributions, and particle ratios were measured. Yields are compared
to predictions of statistical models. Phase-space distributions of light nuclei
are discussed and compared to those of protons in the context of a coalescence
approach. The coalescence parameters and , as well as coalescence
radii for and He were determined as a function of transverse mass at
all energies.Comment: 22 pages, 29 figures, 8 tables, for submission to Phys. Rev.
On the possible space-time fractality of the emitting source
Using simple space-time implementation of the random cascade model we
investigate numerically a conjecture made some time ago which was joining the
intermittent behaviour of spectra of emitted particles with the possible
fractal structure of the emitting source. We demonstrate that such details are
seen, as expected, in the Bose-Einstein correlations between identical
particles. \\Comment: Thoroughly rewritten and modify version, to be published in Phys.
Rev.
Upper Limit of D0 Production in Central Pb-Pb Collisions at 158A GeV
Results are presented from a search for the decays D0 -> Kmin piplus and
D0bar -> Kplus pimin in a sample of 3.8x10^6 central Pb-Pb events collected
with a beam energy of 158A GeV by NA49 at the CERN SPS. No signal is observed.
An upper limit on D0 production is derived and compared to predictions from
several models.Comment: REVTEX 5 pages, 4 figure
Rapidity and energy dependence of the electric charge correlations in A+A collisions at the SPS energies
Results from electric charge correlations studied with the Balance Function
method in A+A collisions from 20\emph{A} to 158\emph{A} GeV are presented in
two different rapidity intervals: In the mid-rapidity region we observe a
decrease of the width of the Balance Function distribution with increasing
centrality of the collision, whereas this effect vanishes in the forward
rapidity region.
Results from the energy dependence study in central Pb+Pb collisions show
that the narrowing of the Balance Function expressed by the normalised width
parameter \textit{W} increases with energy towards the highest SPS and RHIC
energies.
Finally we compare our experimental data points with predictions of several
models. The hadronic string models UrQMD and HIJING do not reproduce the
observed narrowing of the Balance Function. However, AMPT which contains a
quark-parton transport phase before hadronization can reproduce the narrowing
of the BF's width with centrality. This confirms the proposed sensitivity of
the Balance Function analysis to the time of hadronization.Comment: Submitted in Phys. Rev.
Pion and kaon production in central Pb+Pb collisions at 20A and 30A GeV: Evidence for the onset of deconfinement
Results on charged pion and kaon production in central Pb+Pb collisions at
20A and 30A GeV are presented and compared to data at lower and higher
energies. A rapid change of the energy dependence is observed around 30A GeV
for the yields of pions and kaons as well as for the shape of the transverse
mass spectra. The change is compatible with the prediction that the threshold
for production of a state of deconfined matter at the early stage of the
collisions is located at low SPS energies.Comment: 12 pages, 8 figure
Energy dependence of multiplicity fluctuations in heavy ion collisions
The energy dependence of multiplicity fluctuations was studied for the most central Pb+Pb collisions at 20A, 30A, 40A, 80A and 158A GeV by the NA49 experiment at the CERN SPS. The multiplicity distribution for negatively and positively charged hadrons is significantly narrower than Poisson one for all energies. No significant structure in energy dependence of the scaled variance of multiplicity fluctuations is observed. The measured scaled variance is lower than the one predicted by the grand-canonical formulation of the hadron-resonance gas model. The results for scaled variance are in approximate agreement with the string-hadronic model UrQMD
- …
