11,014 research outputs found

    Acoustics of tachyon Fermi gas

    Full text link
    We consider a Fermi gas of free tachyons as a continuous medium and find whether it satisfies the causality condition. There is no stable tachyon matter with the particle density below critical value nTn_T and the Fermi momentum kF<32mk_F<\sqrt{\frac 32}m that depends on the tachyon mass mm. The pressure PP and energy density EE cannot be arbitrary small, but the situation P>EP>E is not forbidden. Existence of shock waves in tachyon gas is also discussed. At low density nT<n<3.45nTn_T<n<3.45n_T the tachyon matter remains stable but no shock wave do survive.Comment: 14 pages, 2 figures (color

    Shock waves in superconducting cosmic strings: growth of current

    Full text link
    Intrinsic equations of motion of superconducting cosmic string may admit solutions in the shock-wave form that implies discontinuity of the current term \chi. The hypersurface of discontinuity propagates at finite velocity determined by finite increment \Delta \chi =\chi_+ -\chi_-. The current increases \chi_+>\chi_- in stable shocks but transition between spacelike (\chi >0) and timelike (\chi<0) currents is impossible.Comment: 13 pages, 3 figure

    Quantum gates and quantum algorithms with Clifford algebra technique

    Full text link
    We use our Clifford algebra technique, that is nilpotents and projectors which are binomials of the Clifford algebra objects γa\gamma^a with the property {γa,γb}+=2ηab\{\gamma^a,\gamma^b\}_+ = 2 \eta^{ab}, for representing quantum gates and quantum algorithms needed in quantum computers in an elegant way. We identify nn-qubits with spinor representations of the group SO(1,3) for a system of nn spinors. Representations are expressed in terms of products of projectors and nilpotents. An algorithm for extracting a particular information out of a general superposition of 2n2^n qubit states is presented. It reproduces for a particular choice of the initial state the Grover's algorithm.Comment: 9 pages, revte

    Interaction between superconducting vortices and Bloch wall in ferrite garnet film

    Full text link
    Interaction between a Bloch wall in a ferrite-garnet film and a vortex in a superconductor is analyzed in the London approximation. Equilibrium distribution of vortices formed around the Bloch wall is calculated. The results agree quantitatively with magneto-optical experiment where an in-plane magnetized ferrite-garnet film placed on top of NbSe2 superconductor allows observation of individual vortices. In particular, our model can reproduce a counter-intuitive attraction observed between vortices and a Bloch wall having the opposite polarity. It is explained by magnetic charges appearing due to discontinuity of the in-plane magnetization across the wall.Comment: 4 pages, 5 figure
    corecore