20 research outputs found

    Enhanced AODV Routing Protocol Using Leader Election Algorithm

    Get PDF
    Failure of communication link in mobile ADHOC network is major issue. For the failure of link the performance of network is degraded. Due to mobility of mobile node brake the communication link and path of routing is failed. For the repairing of routing node used various algorithm such as leader election, distributed and selection algorithm. The failure of link decease the performance of routing protocol in mobile ad-hoc network, for the improvement of quality of service in mobile ad-hoc network various authors proposed a different model and method for prediction of link. The prediction of link decreases the failure rate of mobile node during communication. The leader election algorithm plays a major role in link failure prediction algorithm the process of link failure prediction implied in form of distributed node distribution. Proposed a new link stability prediction method based on current link-related or user-related information in shadowed environments. The modified protocol acquired the process of thresholds priority Oder on the basic of neighbor’s node. The selection of neighbor node deepens on the mode operation in three sections. According to order of state create cluster of priority of group. After creation of group calculate average threshold value and compare each group value with minimum threshold value and pass the control message for communication. Through this process mode of activation state of node is minimized the time of route establishment and maintenance. The selection of proper node in minimum time and other node in sleep mode the consumption of power is reduces. We modified SBRP protocol for selection of node during on demand request node according to sleep and activation mode of communication. Each node locally assigned priority value of node. For the evaluation of performance used network simulator NS-2.35. And simulate two protocol one is AODV-LE protocol, these protocol patch are available for the simulation purpose. And another protocol is AODV-LE-ME. AODV-LE-ME protocol is modified protocol of leader election protocol for the selection of mobile node during the communication. DOI: 10.17762/ijritcc2321-8169.15016

    The population structure and genetic divergence of <i>Labeo gonius</i> (Hamilton, 1822) analyzed through mitochondrial DNA cytochrome b gene for conservation in Indian waters

    No full text
    <p>The present study explains the population structure and genetic diversity of medium carp <i>Labeo gonius</i> by analyzing partial sequence of mitochondrial DNA cytochrome b gene. <i>Labeo gonius</i> is a lower risk Near Threatened species, distributed throughout the North Indian major rivers, reservoirs and lakes. This species has a larger scope as an alternative candidate species in carp aquaculture system. In the present investigation, 223 individuals of <i>Labeo gonius</i> were collected from five locations of phylo-geographically isolated riverine ecosystems of India resulted in 12 haplotypes. These haplotypes showed 14 variables, out of which 9 were singletons and 5 were parsimony informative sites of nucleotide positions. The haplotypes H1 was considered as ancestral haplotype. All the haplotypes were connected to each other by 1–4 nucleotide mutations. The Narmada haplotypes (H10; H11 and H12) were isolated from H1 by four nucleotide mutations. The analyses resulted maximum expansion events (<i>τ</i> = 4.13672) in Narmada, with Fst scores more than other population pairs. The analysis of molecular variance (AMOVA) showed significant genetic differentiation among populations (ØST = 0.69470, <i>p</i> < .000). The genetic differentiation patterns were significantly consistence with geographical distributions. This study rejected the null hypothesis of single panmictic population of medium carp, <i>Labeo gonius</i> in Indian water.</p
    corecore