2,166 research outputs found
Sparse image reconstruction on the sphere: implications of a new sampling theorem
We study the impact of sampling theorems on the fidelity of sparse image
reconstruction on the sphere. We discuss how a reduction in the number of
samples required to represent all information content of a band-limited signal
acts to improve the fidelity of sparse image reconstruction, through both the
dimensionality and sparsity of signals. To demonstrate this result we consider
a simple inpainting problem on the sphere and consider images sparse in the
magnitude of their gradient. We develop a framework for total variation (TV)
inpainting on the sphere, including fast methods to render the inpainting
problem computationally feasible at high-resolution. Recently a new sampling
theorem on the sphere was developed, reducing the required number of samples by
a factor of two for equiangular sampling schemes. Through numerical simulations
we verify the enhanced fidelity of sparse image reconstruction due to the more
efficient sampling of the sphere provided by the new sampling theorem.Comment: 11 pages, 5 figure
Community Detection in Quantum Complex Networks
Determining community structure is a central topic in the study of complex
networks, be it technological, social, biological or chemical, in static or
interacting systems. In this paper, we extend the concept of community
detection from classical to quantum systems---a crucial missing component of a
theory of complex networks based on quantum mechanics. We demonstrate that
certain quantum mechanical effects cannot be captured using current classical
complex network tools and provide new methods that overcome these problems. Our
approaches are based on defining closeness measures between nodes, and then
maximizing modularity with hierarchical clustering. Our closeness functions are
based on quantum transport probability and state fidelity, two important
quantities in quantum information theory. To illustrate the effectiveness of
our approach in detecting community structure in quantum systems, we provide
several examples, including a naturally occurring light-harvesting complex,
LHCII. The prediction of our simplest algorithm, semiclassical in nature,
mostly agrees with a proposed partitioning for the LHCII found in quantum
chemistry literature, whereas our fully quantum treatment of the problem
uncovers a new, consistent, and appropriately quantum community structure.Comment: 16 pages, 4 figures, 1 tabl
Implications for compressed sensing of a new sampling theorem on the sphere
A sampling theorem on the sphere has been developed recently, requiring half
as many samples as alternative equiangular sampling theorems on the sphere. A
reduction by a factor of two in the number of samples required to represent a
band-limited signal on the sphere exactly has important implications for
compressed sensing, both in terms of the dimensionality and sparsity of
signals. We illustrate the impact of this property with an inpainting problem
on the sphere, where we show the superior reconstruction performance when
adopting the new sampling theorem compared to the alternative.Comment: 1 page, 2 figures, Signal Processing with Adaptive Sparse Structured
Representations (SPARS) 201
From <i>extractive</i> to <i>transformative</i> industries:paths for linkages and diversification for resource-driven development
While conventional wisdom has placed the focus of the mining and oil and gas sectors on the fact of extraction, a prolific line of the debate on these industries is shifting towards the extent to which resources, as initial assets, can be transformed into broader-based development by promoting cross-sectoral linkages and diversification. This paper provides an overview of the Special Issue of Mineral Economics “Can Mining be a Catalyst for Diversifying Economies”, exploring trends and suggesting challenges for concepts and practice in these industries. It points to the Post-2015 Development Agenda as an opportunity of a transformational role for the mining industry
Congenital Cytomegalovirus Infection: A Narrative Review of the Issues in Screening and Management From a Panel of European Experts.
Maternal primary and non-primary cytomegalovirus (CMV) infection during pregnancy can result in in utero transmission to the developing fetus. Congenital CMV (cCMV) can result in significant morbidity, mortality or long-term sequelae, including sensorineural hearing loss, the most common sequela. As a leading cause of congenital infections worldwide, cCMV infection meets many of the criteria for screening. However, currently there are no universal programs that offer maternal or neonatal screening to identify infected mothers and infants, no vaccines to prevent infection, and no efficacious and safe therapies available for the treatment of maternal or fetal CMV infection. Data has shown that there are several maternal and neonatal screening strategies, and diagnostic methodologies, that allow the identification of those at risk of developing sequelae and adequately detect cCMV. Nevertheless, many questions remain unanswered in this field. Well-designed clinical trials to address several facets of CMV treatment (in pregnant women, CMV-infected fetuses and both symptomatic and asymptomatic neonates and children) are required. Prevention (vaccines), biology and transmission factors associated with non-primary CMV, and the cost-effectiveness of universal screening, all demand further exploration to fully realize the ultimate goal of preventing cCMV. In the meantime, prevention of primary infection during pregnancy should be championed to all by means of hygiene education
Host--parasite models on graphs
The behavior of two interacting populations, ``hosts''and ``parasites'', is
investigated on Cayley trees and scale-free networks. In the former case
analytical and numerical arguments elucidate a phase diagram, whose most
interesting feature is the absence of a tri-critical point as a function of the
two independent spreading parameters. For scale-free graphs, the parasite
population can be described effectively by
Susceptible-Infected-Susceptible-type dynamics in a host background. This is
shown both by considering the appropriate dynamical equations and by numerical
simulations on Barab\'asi-Albert networks with the major implication that in
the termodynamic limit the critical parasite spreading parameter vanishes.Comment: 10 pages, 6 figures, submitted to PRE; analytics redone, new
calculations added, references added, appendix remove
Chiral Quantum Walks
Given its importance to many other areas of physics, from condensed matter
physics to thermodynamics, time-reversal symmetry has had relatively little
influence on quantum information science. Here we develop a network-based
picture of time-reversal theory, classifying Hamiltonians and quantum circuits
as time-symmetric or not in terms of the elements and geometries of their
underlying networks. Many of the typical circuits of quantum information
science are found to exhibit time-asymmetry. Moreover, we show that
time-asymmetry in circuits can be controlled using local gates only, and can
simulate time-asymmetry in Hamiltonian evolution. We experimentally implement a
fundamental example in which controlled time-reversal asymmetry in a
palindromic quantum circuit leads to near-perfect transport. Our results pave
the way for using time-symmetry breaking to control coherent transport, and
imply that time-asymmetry represents an omnipresent yet poorly understood
effect in quantum information science.Comment: 9 pages, 4 figures, REVTeX 4.1 - published versio
- …
