34 research outputs found
Cross‐sectional brain age assessments are limited in predicting future brain change
The concept of brain age (BA) describes an integrative imaging marker of brain health, often suggested to reflect aging processes. However, the degree to which cross-sectional MRI features, including BA, reflect past, ongoing, and future brain changes across different tissue types from macro- to microstructure remains controversial. Here, we use multimodal imaging data of 39,325 UK Biobank participants, aged 44–82 years at baseline and 2,520 follow-ups within 1.12–6.90 years to examine BA changes and their relationship to anatomical brain changes. We find insufficient evidence to conclude that BA reflects the rate of brain aging. However, modality-specific differences in brain ages reflect the state of the brain, highlighting diffusion and multimodal MRI brain age as potentially useful cross-sectional markers
Top Quark Physics
We review the prospects for studies of the top quark at the LHC.We review the prospects for studies of the top quark at the LHC. Members of the working group who have contributed to this document are: A.Ahmadov, G.Azuelos, U.Baur, A.Belyaev, E.L.Berger, W.Bernreuther, E.E.Boos, M.Bosman, A.Brandenburg, R.Brock, M.Buice, N.Cartiglia, F.Cerutti, A.Cheplakov, L.Chikovani, M.Cobal-Grassmann, G.Corcella, F.del Aguila, T.Djobava, J.Dodd, V.Drollinger, A.Dubak, S.Frixione, D.Froidevaux, B.Gonzalez Pineiro, Y.P.Gouz, D.Green, P.Grenier, S.Heinemeyer, W.Hollik, V.Ilyin, C.Kao, A.Kharchilava, R. Kinnunen, V.V.Kukhtin, S.Kunori, L.La Rotonda, A.Lagatta, M.Lefebvre, K.Maeshima, G.Mahlon, S.Mc Grath, G.Medin, R.Mehdiyev, B.Mele, Z.Metreveli, D.O'Neil, L.H.Orr, D.Pallin, S.Parke, J.Parsons, D.Popovic, L.Reina, E.Richter-Was, T.G.Rizzo, D.Salihagic, M.Sapinski, M.H.Seymour, V.Simak, L.Simic, G.Skoro, S.R.Slabospitsky, J.Smolik, L.Sonnenschein, T.Stelzer, N.Stepanov, Z.Sullivan, T.Tait, I.Vichou, R.Vidal, D.Wackeroth, G.Weiglein, S.Willenbrock, W.W
Individual variations in 'brain age' relate to early-life factors more than to longitudinal brain change
Tenacibaculum crassostreae sp. nov., isolated from the Pacific oyster, Crassostrea gigas
Effects of Long-Duration Administration of 1% Isoflurane on Resting Cerebral Blood Flow and Default Mode Network in Macaque Monkeys
Corticosteroids and Regional Variations in Thickness of the Human Cerebral Cortex across the Lifespan
Constructing personalized characterizations of structural brain aberrations in patients with dementia using explainable artificial intelligence
Maritimimonas rapanae gen. nov., sp. nov., isolated from gut microflora of the veined rapa whelk, Rapana venosa
Associations of neuroinflammatory IL-6 and IL-8 with brain atrophy, memory decline, and core AD biomarkers-in cognitively unimpaired older adults
Concentrations of pro-inflammatory cytokines -interleukin-6 (IL-6) and interleukin-8 (IL-8) - are increased with age and in Alzheimer's disease (AD). It is not clear whether concentrations of IL-6 and IL-8 in the central nervous system predict later brain and cognitive changes over time nor whether this relationship is mediated by core AD biomarkers. Here, 219 cognitively healthy older adults (62-91 years), with baseline cerebrospinal fluid (CSF) measures of IL-6 and IL-8 were followed over time - up to 9 years - with assessments that included cognitive function, structural magnetic resonance imaging, and CSF measurements of phosphorylated tau (p-tau) and amyloid-& beta; (A & beta;-42) concentrations (for a subsample). Higher baseline CSF IL-8 was associated with better memory performance over time in the context of lower levels of CSF p-tau and p-tau/A & beta;-42 ratio. Higher CSF IL-6 was related to less CSF p-tau changes over time. The results are in line with the hypothesis suggesting that an upregulation of IL-6 and IL-8 in the brain may play a neuroprotective role in cognitively healthy older adults with lower load of AD pathology
