34 research outputs found

    Cross‐sectional brain age assessments are limited in predicting future brain change

    Get PDF
    The concept of brain age (BA) describes an integrative imaging marker of brain health, often suggested to reflect aging processes. However, the degree to which cross-sectional MRI features, including BA, reflect past, ongoing, and future brain changes across different tissue types from macro- to microstructure remains controversial. Here, we use multimodal imaging data of 39,325 UK Biobank participants, aged 44–82 years at baseline and 2,520 follow-ups within 1.12–6.90 years to examine BA changes and their relationship to anatomical brain changes. We find insufficient evidence to conclude that BA reflects the rate of brain aging. However, modality-specific differences in brain ages reflect the state of the brain, highlighting diffusion and multimodal MRI brain age as potentially useful cross-sectional markers

    Top Quark Physics

    Get PDF
    We review the prospects for studies of the top quark at the LHC.We review the prospects for studies of the top quark at the LHC. Members of the working group who have contributed to this document are: A.Ahmadov, G.Azuelos, U.Baur, A.Belyaev, E.L.Berger, W.Bernreuther, E.E.Boos, M.Bosman, A.Brandenburg, R.Brock, M.Buice, N.Cartiglia, F.Cerutti, A.Cheplakov, L.Chikovani, M.Cobal-Grassmann, G.Corcella, F.del Aguila, T.Djobava, J.Dodd, V.Drollinger, A.Dubak, S.Frixione, D.Froidevaux, B.Gonzalez Pineiro, Y.P.Gouz, D.Green, P.Grenier, S.Heinemeyer, W.Hollik, V.Ilyin, C.Kao, A.Kharchilava, R. Kinnunen, V.V.Kukhtin, S.Kunori, L.La Rotonda, A.Lagatta, M.Lefebvre, K.Maeshima, G.Mahlon, S.Mc Grath, G.Medin, R.Mehdiyev, B.Mele, Z.Metreveli, D.O'Neil, L.H.Orr, D.Pallin, S.Parke, J.Parsons, D.Popovic, L.Reina, E.Richter-Was, T.G.Rizzo, D.Salihagic, M.Sapinski, M.H.Seymour, V.Simak, L.Simic, G.Skoro, S.R.Slabospitsky, J.Smolik, L.Sonnenschein, T.Stelzer, N.Stepanov, Z.Sullivan, T.Tait, I.Vichou, R.Vidal, D.Wackeroth, G.Weiglein, S.Willenbrock, W.W

    Associations of neuroinflammatory IL-6 and IL-8 with brain atrophy, memory decline, and core AD biomarkers-in cognitively unimpaired older adults

    No full text
    Concentrations of pro-inflammatory cytokines -interleukin-6 (IL-6) and interleukin-8 (IL-8) - are increased with age and in Alzheimer's disease (AD). It is not clear whether concentrations of IL-6 and IL-8 in the central nervous system predict later brain and cognitive changes over time nor whether this relationship is mediated by core AD biomarkers. Here, 219 cognitively healthy older adults (62-91 years), with baseline cerebrospinal fluid (CSF) measures of IL-6 and IL-8 were followed over time - up to 9 years - with assessments that included cognitive function, structural magnetic resonance imaging, and CSF measurements of phosphorylated tau (p-tau) and amyloid-& beta; (A & beta;-42) concentrations (for a subsample). Higher baseline CSF IL-8 was associated with better memory performance over time in the context of lower levels of CSF p-tau and p-tau/A & beta;-42 ratio. Higher CSF IL-6 was related to less CSF p-tau changes over time. The results are in line with the hypothesis suggesting that an upregulation of IL-6 and IL-8 in the brain may play a neuroprotective role in cognitively healthy older adults with lower load of AD pathology
    corecore