13 research outputs found

    Glycine betaine allows enhanced induction of the Agrobacterium tumefaciens vir genes by acetosyringone at low pH.

    No full text
    We established growth conditions for efficient induction of the vir genes of Agrobacterium tumefaciens by acetosyringone. Optimal induction was attained at a pH below 5.2 in an AB minimal medium-derived high-osmotic-strength medium containing glycine betaine. This natural osmoprotectant accelerated the adaptation of the bacteria to these conditions. We established the kinetics of induction for virB, virD, virE, and virG by using lacZ fusions, and we found that the virB mutant strain could not adapt to this low-pH medium unless 1 mM CaCl2 was added. This pH control of vir gene expression was shown to act at the level of expression of virG, which was the limiting factor. This improved vir induction at a low pH correlated with an increase in a set of proteins which was analyzed by two-dimensional gel electrophoresis. The fact that high inducibility corresponded to a reduced growth rate and the demonstration that a set of proteins was associated with the inducible state suggest that vir gene induction is linked to the adaptation of the cells to an unfavorable environment. Hence, vir gene expression in A. tumefaciens is probably dependent upon a machinery which is specific to an adaptive response; the implications for plant transformation are discussed

    The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species

    No full text
    Explants of five plant species (Allium cepa, Antirrhinum majus, Brassica campestris, Glycine max, and Nicotiana tabacum) were co-cultivated with three Agrobacterium tumefaciens stains under different conditions to assess the effects of acetosyringone and medium pH on strain virulence. Tumours were incited on all dicotyledonous species by strains N2/73 and A281. The presence of acetosyringone during co-cultivation generally enhanced the virulence of these strains, most markedly N2/73 on A. majus and G. max, and A281 on G. max. Strain Ach5 was virulent only on N. tabacum in the absence of acetosyringone, which, when present, extended the host range to include A. majus. There was evidence to suggest that acetosyringone may suppress virulence in some strain/plant species interactions. Virulence was affected in some cases by medium pH, but there was no general effect across plant species
    corecore