18 research outputs found

    Oral flecainide acetate for elimination of ventricular arrhythmias in man

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24476/1/0000751.pd

    Acetylcholine-producing T cells augment innate immune-driven colitis but are redundant in T cell-driven colitis

    No full text
    Clinical trials suggest that vagus nerve stimulation presents an alternative approach to classical immune suppression in Crohn's disease. T cells capable of producing acetylcholine (ChAT+ T cells) in the spleen are essential mediators of the anti-inflammatory effect of vagus nerve stimulation. Besides the spleen, ChAT+ T cells are found abundantly in Peyer's patches of the small intestine. However, the role of ChAT+ T cells in colitis pathogenesis is unknown. Here, we made use of CD4creChATfl/fl mice (CD4ChAT-/- mice) lacking ChAT expression specifically in CD4+ T cells. Littermates (ChATfl/fl mice) served as controls. In acute dextran sulfate sodium (DSS)-induced colitis (7 days of 2% DSS in drinking water), CD4ChAT-/- mice showed attenuated colitis and lower intestinal inflammatory cytokine levels compared with ChATfl/fl mice. In contrast, in a resolution model of DSS-induced colitis (5 days of 2% DSS followed by 7 days without DSS), CD4ChAT-/- mice demonstrated a worsened colitis recovery and augmented colonic histological inflammation scores and inflammatory cytokine levels as compared with ChATfl/fl mice. In a transfer colitis model using CD4+CD45RBhigh T cells, T cells from CD4ChAT-/- mice induced a similar level of colitis compared with ChATfl/fl T cells. Together, our results indicate that ChAT+ T cells aggravate the acute innate immune response upon mucosal barrier disruption in an acute DSS-induced colitis model, whereas they are supporting the later resolution process of this innate immune-driven colitis. Surprisingly, ChAT expression in T cells seems redundant in the context of T cell-driven colitis.NEW & NOTEWORTHY By using different mouse models of experimental colitis, we provide evidence that in dextran sulfate sodium-induced colitis, ChAT+ T cells capable of producing acetylcholine worsen the acute immune response, whereas they support the later healing phase of this innate immune-driven colitis

    Esophageal and Small Intestinal Mucosal Integrity in Eosinophilic Esophagitis and Response to an Elemental Diet

    No full text
    The esophageal mucosal integrity is impaired in eosinophilic esophagitis (EoE) and it has been suggested that the duodenal permeability is increased. The absence of food allergens may restore the integrity. The aims of this study were to assess duodenal permeability in EoE and to evaluate the effect of an elemental diet on the esophageal and duodenal integrity. In this prospective study 17 adult EoE patients and 8 healthy controls (HC) were included. Esophageal biopsy specimens were sampled before and after 4 weeks of elemental diet to measure eosinophil counts and gene expression of tight junction and barrier integrity proteins. Esophageal and duodenal impedance were measured by electrical tissue impedance spectroscopy and Ussing chambers were used to measure transepithelial resistance (TER) and transepithelial molecule flux. Small intestinal permeability was measured using a test, measuring lactulose/mannitol (L/M) ratios. In EoE patients, the esophageal but not the duodenal integrity was impaired, compared with HC. We observed no significant difference between L/M ratios of HC and EoE patients. After diet, eosinophil counts decreased significantly, which was paralleled by normalization of esophageal impedance and transepithelial molecule flux. The esophageal TER improved significantly, but did not reach values seen in HC. Esophageal expression of genes encoding for barrier integrity proteins filaggrin and desmoglein-1 was impaired at baseline and restored after diet. An elemental diet restores esophageal integrity, suggesting that it is at least partly secondary to allergen exposure. Duodenal integrity seems not to be affected in EoE, and possibly plays a minor role in its pathophysiolog

    A JAK1 Selective Kinase Inhibitor and Tofacitinib Affect Macrophage Activation and Function

    No full text
    BACKGROUND: Janus kinases (JAKs) mediate cytokine signaling involved in inflammatory bowel disease. The pan-JAK inhibitor tofacitinib has shown efficacy in the treatment of ulcerative colitis. However, concerns regarding adverse events due to their wide spectrum inhibition fueled efforts to develop selective JAK inhibitors. Given the crucial role of myeloid cells in intestinal immune homeostasis, we evaluated the effect of pan-JAK and selective JAK inhibitors on pro- and anti-inflammatory macrophage polarization and function (M1/M2) and in experimental colitis. METHODS: Murine bone marrow-derived macrophages or human monocytes were treated using JAK1 and JAK3 selective inhibitors (JAK1i;JAK3i) and tofacitinib and were evaluated by transcriptional, functional, and metabolic analyses. In vivo, oral administration of JAK1i and tofacitinib (10 or 30 mg/kg) was tested in both acute and acute rescue dextran sodium sulfate (DSS) colitis. RESULTS: Both tofacitinib and JAK1i but not JAK3i effectively inhibited STAT1 phosphorylation and interferon gamma-induced transcripts in M1 polarized macrophages. Strikingly, transcriptional profiling suggested a switch from M1 to M2 type macrophages, which was supported by increased protein expression of M2-associated markers. In addition, both inhibitors enhanced oxidative phosphorylation rates. In vivo, JAK1i and tofacitinib did not protect mice from acute DSS-induced colitis but ameliorated recovery from weight loss and disease activity during acute rescue DSS-induced colitis at the highest dose. CONCLUSION: JAK1i and tofacitinib but not JAK3i induce phenotypical and functional characteristics of anti-inflammatory macrophages, suggesting JAK1 as the main effector pathway for tofacitinib in these cells. In vivo, JAK1i and tofacitinib modestly affect acute rescue DSS-induced colitis

    Electrical stimulation of the splenic nerve bundle ameliorates dextran sulfate sodium-induced colitis in mice

    No full text
    Background: Vagus nerve stimulation has been suggested to affect immune responses, partly through a neuronal circuit requiring sympathetic innervation of the splenic nerve bundle and norepinephrine (NE) release. Molecular and cellular mechanisms of action remain elusive. Here, we investigated the therapeutic value of this neuromodulation in inflammatory bowel disease (IBD) by applying electrical splenic nerve bundle stimulation (SpNS) in mice with dextran sulfate sodium (DSS)-induced colitis. Methods: Cuff electrodes were implanted around the splenic nerve bundle in mice, whereupon mice received SpNS or sham stimulation. Stimulation was applied 6 times daily for 12 days during DSS-induced colitis. Colonic and splenic tissues were collected for transcriptional analyses by qPCR and RNA-sequencing (RNA-seq). In addition, murine and human splenocytes were stimulated with lipopolysaccharide (LPS) in the absence or presence of NE. Single-cell RNA-seq data from publicly available data sets were analyzed for expression of β-adrenergic receptors (β-ARs). Results: Colitic mice undergoing SpNS displayed reduced colon weight/length ratios and showed improved Disease Activity Index scores with reduced Tumor Necrosis Factor α mRNA expression in the colon compared with sham stimulated mice. Analyses of splenocytes from SpNS mice using RNA-seq demonstrated specific immune metabolism transcriptome profile changes in myeloid cells. Splenocytes showed expression of β-ARs in myeloid and T cells. Cytokine production was reduced by NE in mouse and human LPS-stimulated splenocytes. Conclusions: Together, our results demonstrate that SpNS reduces clinical features of colonic inflammation in mice with DSS-induced colitis possibly by inhibiting splenic myeloid cell activation. Our data further support exploration of the clinical use of SpNS for patients with IBD
    corecore