12 research outputs found

    Antimicrobial peptides of the Cecropin-family show potent antitumor activity against bladder cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study evaluated the cytotoxic and antiproliferative efficacy of two well-characterized members of the Cecropin-family of antimicrobial peptides against bladder tumor cells and benign fibroblasts.</p> <p>Methods</p> <p>The antiproliferative and cytotoxic potential of the Cecropins A and B was quantified by colorimetric WST-1-, BrdU- and LDH-assays in four bladder cancer cell lines as well as in murine and human fibroblast cell lines. IC<sub>50 </sub>values were assessed by logarithmic extrapolation, representing the concentration at which cell viability was reduced by 50%. Scanning electron microscopy (SEM) was performed to visualize the morphological changes induced by Cecropin A and B in bladder tumor cells and fibroblasts.</p> <p>Results</p> <p>Cecropin A and B inhibit bladder cancer cell proliferation and viability in a dose-dependent fashion. The average IC<sub>50 </sub>values of Cecropin A and B against all bladder cancer cell lines ranged between 73.29 μg/ml and 220.05 μg/ml. In contrast, benign fibroblasts were significantly less or not at all susceptible to Cecropin A and B. Both Cecropins induced an increase in LDH release from bladder tumor cells whereas benign fibroblasts were not affected. SEM demonstrated lethal membrane disruption in bladder cancer cells as opposed to fibroblasts.</p> <p>Conclusion</p> <p>Cecropin A and B exert selective cytotoxic and antiproliferative efficacy in bladder cancer cells while sparing targets of benign murine or human fibroblast origin. Both peptides may offer novel therapeutic strategies for the treatment of bladder cancer with limited cytotoxic effects on benign cells.</p

    Optimal Management of Prostate Cancer Based on its Natural Clinical History

    No full text
    Prostate cancer is the most common malignancy in males and, despite a marked improvement in diagnostic techniques, a not small percentage of prostate tumours is still diagnosed in advanced stage. It is now clear that prostate cancer passes through distinct phases during its natural history, starting from an initial phase, in which the disease has a locoregional extent, until a very late phase when it becomes refractory to hormone therapy. It is important to distinguish between local disease, in which tumor may be considered localized in the gland and a systemic disease characterized by high tumor burden and/or dissemination of circulating tumour cells. All the prostate cancers, at first diagnosis, are characterized by high sensitivity to the androgen deprivation therapy (ADT); however, during the natural history, after a variable period, they become castration resistant. In the past, few therapy options were available for castration resistant prostate cancer, while at present much more approaches can be employed, both hormone-based therapies and chemotherapy regimens. Hypercastration agents are defined as drugs capable to target the androgen-androgen receptor axis even in castrate resistant conditions. Abiraterone and enzalutamide are the only two hypercastration agents available for clinical use. Osteoclast targeted agents, such as zoledronic acid and denosumab can always been employed, but their use should be limited to the castrate resistant setting. The optimal understanding of all phases characterizing the natural history of prostate cancer may certainly be useful for the selection of the best therapeutic options in prostate cancer
    corecore