43 research outputs found
How to Tango: a manual for implementing Spine Tango
The generic approach of the Spine Tango documentation system, which uses web-based technologies, is a necessity for reaching a maximum number of participants. This, in turn, reduces the potential for customising the Tango according to the individual needs of each user. However, a number of possibilities still exist for tailoring the data collection processes to the user's own hospital workflow. One can choose between a purely paper-based set-up (with in-house scanning, data punching or mailing of forms to the data centre at the University of Bern) and completely paper-free online data entry. Many users work in a hybrid mode with online entry of surgical data and paper-based recording of the patients' perspectives using the Core Outcome Measures Index (COMI) questionnaires. Preoperatively, patients can complete their questionnaires in the outpatient clinic at the time of taking the decision about surgery or simply at the time of hospitalisation. Postoperative administration of patient data can involve questionnaire completion in the outpatient clinic, the handing over the forms at the time of discharge for their mailing back to the hospital later, sending out of questionnaires by post with a stamped addressed envelope for their return or, in exceptional circumstances, conducting telephone interviews. Eurospine encourages documentation of patient-based information before the hospitalisation period and surgeon-based information both before and during hospitalisation; both patient and surgeon data should be acquired for at least one follow-up, at a minimum of three to six months after surgery. In addition, all complications that occur after discharge, and their consequences should be recorde
Simultaneous Acquisition of the Polarized and Depolarized Raman Signal with a Single Detector
Peer reviewedPublisher PD
Earth’s earliest and deepest purported fossils may be iron-mineralized chemical gardens
Recognizing fossil microorganisms is essential to the study of life’s origin and evolution and to the ongoing search for life on Mars. Purported fossil microbes in ancient rocks include common assemblages of iron-mineral filaments and tubes. Recently, such assemblages have been interpreted to represent Earth’s oldest body fossils, Earth’s oldest fossil fungi, and Earth’s best analogues for fossils that might form in the basaltic martian subsurface. Many of these putative fossils exhibit hollow circular cross-sections, life-like (non-crystallographic, constant-thickness, bifurcate) branching, anastomosis, nestedness within “sheaths”, and other features interpreted as strong evidence for a biological origin, since no abiotic process consistent with the composition of the filaments has been shown to produce these specific life-like features either in nature or in the laboratory. Here, I show experimentally that abiotic chemical gardening can mimic such purported fossils in both morphology and composition. In particular, chemical gardens meet morphological criteria previously proposed to establish biogenicity, while also producing the precursors to the iron minerals most commonly constitutive of filaments in the rock record. Chemical gardening is likely to occur in nature. Such microstructures should therefore not be assumed to represent fossil microbes without independent corroborating evidence
Investigation of the Stokes to anti‐Stokes ratio for germanium nanowires obtained by electrochemical deposition
Site Occupancy of Ti<sup>4+</sup>-Doped ZrGeO<sub>4</sub> and HfGeO<sub>4</sub> Probed by Raman Spectroscopy
Raman Spectroscopy of Ion-Implanted Silicon
AbstractRaman spectroscopy is used to characterize silicon implanted with boron at a dose of 1014/cm2 or less and thermally annealed. The Raman scattering strengths and band shapes of the first-order optical mode at 520 cm-1 and of the second-order phonon modes are investigated to determine which modes are sensitive to the boron implant. The asimplanted samples show diminishing Raman scattering strength as the boron dose increases when the incident laser beam is 60° with respect to the sample normal. Thermal annealing restores some of the Raman scattering strength. Three excitation wavelengths are used and the shortest, 457.9 nm, yields the greatest spectral differences from unimplanted silicon. The backscattering geometry shows a variety of changes in the Raman spectrum upon boron implantation. These involve band shifts of the first-order optical mode, bandwidth variations of the first-order optical mode, and the intensity of the second-order mode at 620 cm-1.</jats:p
Raman Spectroscopy of Ion-Implanted Silicon
AbstractRaman spectroscopy is used to characterize silicon implanted with boron at a dose of 1014/cm2 or less and thermally annealed. The Raman scattering strengths and band shapes of the first-order optical mode at 520 cm-1 and of the second-order phonon modes are investigated to determine which modes are sensitive to the boron implant. The asimplanted samples show diminishing Raman scattering strength as the boron dose increases when the incident laser beam is 60° with respect to the sample normal. Thermal annealing restores some of the Raman scattering strength. Three excitation wavelengths are used and the shortest, 457.9 nm, yields the greatest spectral differences from unimplanted silicon. The backscattering geometry shows a variety of changes in the Raman spectrum upon boron implantation. These involve band shifts of the first-order optical mode, bandwidth variations of the first-order optical mode, and the intensity of the second-order mode at 620 cm-1.</jats:p
Micro-Raman Characterization of Unusual Defect Structure in Arsenic-Implanted Silicon
AbstractRaman spectroscopy has often been used to study the damage to semiconductors induced by ion implantation. Off-axis, macro-Raman spectra reveal extensive damage to the silicon lattice, consistent with many literature reports. However, when the same samples were analyzed in the backscattering mode by micro-Raman spectroscopy, evidence was found for orientational dependent lattice damage and an unusual defect structure. P/O micro-Raman spectra reveal the spatially-varying appearance of a band between 505 and 510 cm−1 always accompanied by that of the silicon optical mode at 520 cm−1.</jats:p
Micro-Raman Characterization of Arsenic-Implanted Silicon: Interpretation of the Spectra
AbstractRaman spectra were measured on arsenic-implanted silicon with micro-Raman spectroscopy in the backscattering mode and with macro-Raman spectroscopy. A peak is observed between 505 and 510 cm−1 with 488 and 514.5 nm excitation. This peak and a related peak from the substrate at about 520 cm−1 are seen in selected regions of the implanted samples when the implant dose is above 2 × 1014 As/cm2. These features may be due to a long room temperature anneal, as they are absent in recently prepared samples. Possible explanations for the features are presented.</jats:p
