597 research outputs found

    Falling Incapacity Benefit claims in a former industrial city: policy impacts or labour market improvement?

    Get PDF
    This article provides an in-depth study of Incapacity Benefit (IB) claims in a major city and of the factors behind their changing level. It relates to the regime prior to the introduction of the Employment and Support Allowance (ESA) in 2008. Glasgow has had one of the highest levels of IB in Britain with a peak of almost one fifth of the working age population on IB or Severe Disablement Allowance (SDA). However, over the past decade the number of IB claimants in Glasgow, as in other high claiming areas, has fallen at a faster rate than elsewhere, and Glasgow now has twice the national proportion of working-age people on IB/SDA rather than its peak of three times. The rise in IB in Glasgow can be attributed primarily to deindustrialisation; between 1971 and 1991, over 100,000 manufacturing jobs were lost in the city. Policy response was belated. Lack of local statistics on IB led to a lengthy delay in official recognition of the scale of the issue, and targeted programmes to divert or return IB claimants to work did not begin on any scale until around 2004. Evidence presented in the article suggests that the reduction in claims, which has mainly occurred since about 2003, has been due more to a strengthening labour market than to national policy changes or local programmes. This gives strong support to the view that excess IB claims are a form of disguised unemployment. Further detailed evaluation of ongoing programmes is required to develop the evidence base for this complex area. However, the study casts some doubt on the need for the post-2006 round of IB reforms in high-claim areas, since rapid decline in the number of claimants was already occurring in these areas. The article also indicates the importance of close joint working between national and local agencies, and further development of local level statistics on IB claimants

    The decay of highly excited open strings

    Get PDF
    The decay rates of leading edge Regge trajectory states are calculated for very high level number in open bosonic string theories, ignoring tachyon final states. The optical theorem simplifies the analysis while enabling identification of the different mass level decay channels. The main result is that (in four dimensions) the greatest single channel is the emission of a single photon and a state of the next mass level down. A simple asymptotic formula for arbitrarily high level number is given for this process. Also calculated is the total decay rate exactly up to N=100. It shows little variation over this range but appears to decrease for larger N. The formalism is checked in examples and the decay rate of the first excited level calculated for open superstring theories. The calculation may also have implications for high spin meson resonances

    Classical Propagation of Strings across a Big Crunch/Big Bang Singularity

    Full text link
    One of the simplest time-dependent solutions of M theory consists of nine-dimensional Euclidean space times 1+1-dimensional compactified Milne space-time. With a further modding out by Z_2, the space-time represents two orbifold planes which collide and re-emerge, a process proposed as an explanation of the hot big bang. When the two planes are near, the light states of the theory consist of winding M2-branes, describing fundamental strings in a particular ten-dimensional background. They suffer no blue-shift as the M theory dimension collapses, and their equations of motion are regular across the transition from big crunch to big bang. In this paper, we study the classical evolution of fundamental strings across the singularity in some detail. We also develop a simple semi-classical approximation to the quantum evolution which allows one to compute the quantum production of excitations on the string and implement it in a simplified example.Comment: 38 pages, 19 figure

    The string wave function across a Kasner singularity

    Full text link
    A collision of orbifold planes in eleven dimensions has been proposed as an explanation of the hot big bang. When the two planes are close to each other, the winding membranes become the lightest modes of the theory, and can be effectively described in terms of fundamental strings in a ten dimensional background. Near the brane collision, the eleven-dimensional metric is an Euclidean space times a 1+1-dimensional Milne universe. However, one may expect small perturbations to lead into a more general Kasner background. In this paper we extend the previous classical analysis of winding membranes to Kasner backgrounds, and using the Hamiltonian equations, solve for the wave function of loops with circular symmetry. The evolution across the singularity is regular, and explained in terms of the excitement of higher oscillation modes. We also show there is finite particle production and unitarity is preserved.Comment: 28 pages, 10 figure

    Establishing the potential for using routine data on Incapacity Benefit to assess the local impact of policy initiatives

    Get PDF
    <i>Background</i>: Incapacity Benefit (IB) is the key contributory benefit for people who are incapable of work because of illness or disability. <i>Methods</i>: The aims were to establish the utility of routinely collected data for local evaluation and to provide a descriptive epidemiology of the IB population in Glasgow and Scotland for the period 2000–05 using data supplied by the Department for Work and Pensions. <i>Results</i>: Glasgow's IB population is large in absolute and relative terms but is now falling, mainly due to a decrease in on flow. Claimants, tend to be older, have a poor work history and suffer from mental health problems. The rate of decline has been greater in Glasgow than Scotland, although the rate of on flow is still higher. <i>Conclusions</i>: Department for Work and Pensions (DWP) data can be used locally to provide important insights into the dynamics of the IB population. However, to be truly useful, more work needs to be undertaken to combine the DWP data with other information

    Power Spectra in Global Defect Theories of Cosmic Structure Formation

    Full text link
    An efficient technique for computing perturbation power spectra in field ordering theories of cosmic structure formation is introduced, enabling computations to be carried out with unprecedented precision. Large scale simulations are used to measure unequal time correlators of the source stress energy, taking advantage of scaling during matter and radiation domination, and causality, to make optimal use of the available dynamic range. The correlators are then re-expressed in terms of a sum of eigenvector products, a representation which we argue is optimal, enabling the computation of the final power spectra to be performed at high accuracy. Microwave anisotropy and matter perturbation power spectra for global strings, monopoles, textures and non-topological textures are presented and compared with recent observations.Comment: 4 pages, compressed and uuencoded RevTex file and postscript figure

    Collapse of topological texture

    Get PDF
    We study analytically the process of a topological texture collapse in the approximation of a scaling ansatz in the nonlinear sigma-model. In this approximation we show that in flat space-time topological texture eventually collapses while in the case of spatially flat expanding universe its fate depends on the rate of expansion. If the universe is inflationary, then there is a possibility that texture will expand eternally; in the case of exponential inflation the texture may also shrink or expand eternally to a finite limiting size, although this behavior is degenerate. In the case of power law noninflationary expansion topological texture eventually collapses. In a cold matter dominated universe we find that texture which is formed comoving with the universe expansion starts collapsing when its spatial size becomes comparable to the Hubble size, which result is in agreement with the previous considerations. In the nonlinear sigma-model approximation we consider also the final stage of the collapsing ellipsoidal topological texture. We show that during collapse of such a texture at least two of its principal dimensions shrink to zero in a similar way, so that their ratio remains finite. The third dimension may remain finite (collapse of cigar type), or it may also shrink to zero similar to the other two dimensions (collapse of scaling type), or shrink to zero similar to the product of the remaining two dimensions (collapse of pancake type).Comment: 23 pages, LaTeX, to be published in Phys. Rev.

    The Doppler Peaks from Cosmic Texture

    Get PDF
    We compute the angular power spectrum of temperature anisotropies on the microwave sky in the cosmic texture theory, with standard recombination assumed. The spectrum shows `Doppler' peaks analogous to those in scenarios based on primordial adiabatic fluctuations such as `standard CDM', but at quite different angular scales. There appear to be excellent prospects for using this as a discriminant between inflationary and cosmic defect theories.Comment: 14 pages, latex, 3 figures, compressed and uuencoded, replaced version has minor typographical correction
    corecore