343 research outputs found

    Deterministic spatio-temporal control of nano-optical fields in optical antennas and nano transmission lines

    Full text link
    We show that pulse shaping techniques can be applied to tailor the ultrafast temporal response of the strongly confined and enhanced optical near fields in the feed gap of resonant optical antennas (ROAs). Using finite-difference time-domain (FDTD) simulations followed by Fourier transformation, we obtain the impulse response of a nano structure in the frequency domain, which allows obtaining its temporal response to any arbitrary pulse shape. We apply the method to achieve deterministic optimal temporal field compression in ROAs with reduced symmetry and in a two-wire transmission line connected to a symmetric dipole antenna. The method described here will be of importance for experiments involving coherent control of field propagation in nanophotonic structures and of light-induced processes in nanometer scale volumes.Comment: 5 pages, 5 figure

    Mode imaging and selection in strongly coupled nanoantennas

    Full text link
    The number of eigenmodes in plasmonic nanostructures increases with complexity due to mode hybridization, raising the need for efficient mode characterization and selection. Here we experimentally demonstrate direct imaging and selective excitation of the bonding and antibonding plasmon mode in symmetric dipole nanoantennas using confocal two-photon photoluminescence mapping. Excitation of a high-quality-factor antibonding resonance manifests itself as a two-lobed pattern instead of the single spot observed for the broad bonding resonance, in accordance with numerical simulations. The two-lobed pattern is observed due to the fact that excitation of the antibonding mode is forbidden for symmetric excitation at the feedgap, while concomitantly the mode energy splitting is large enough to suppress excitation of the bonding mode. The controlled excitation of modes in strongly coupled plasmonic nanostructures is mandatory for efficient sensors, in coherent control as well as for implementing well-defined functionalities in complex plasmonic devices.Comment: 11 pages, 5 figures, 1 supplementary informatio

    The Weaker Sex? The Propensity for Male-Biased Piglet Mortality

    Get PDF
    For the most part solutions to farm animal welfare issues, such as piglet mortality, are likely to lie within the scientific disciplines of environmental design and genetic selection, however understanding the ecological basis of some of the complex dynamics observed between parent and offspring could make a valuable contribution. One interesting, and often discussed, aspect of mortality is the propensity for it to be sex-biased. This study investigated whether known physiological and behavioural indicators of piglet survival differed between the sexes and whether life history strategies (often reported in wild or feral populations) relating to parental investment were being displayed in a domestic population of pigs. Sex ratio (proportion of males (males/males+females)) at birth was 0.54 and sex allocation (maternal investment measured as piglet birth weight/litter weight) was statistically significantly male-biased at 0.55 (t35 = 2.51 P = 0.017), suggesting that sows invested more in sons than daughters during gestation. Despite this investment in birth weight, a known survival indicator, total pre-weaning male mortality was statistically significantly higher than female mortality (12% vs. 7% respectively z = 2.06 P = 0.040). Males tended to suffer from crushing by the sow more than females and statistically significantly more males died from disease-related causes. Although males were born on average heavier, with higher body mass index and ponderal index, these differences were not sustained. In addition male piglets showed impaired thermoregulation compared to females. These results suggest male-biased mortality exists despite greater initial maternal investment, and therefore reflects the greater susceptibility of this sex to causal mortality factors. Life history strategies are being displayed by a domestic population of pigs with sows in this study displaying a form of parental optimism by allocating greater resources at birth to males and providing an over-supply of this more vulnerable sex in expectation of sex-biased mortality

    Measurement of hadronic shower punchthrough in magnetic field

    Get PDF
    The total punchthrough probability of showers produced by negative pions, positive pions, positive kaons and protons, has been measured as a function of depth in an absorber in a magnetic field ranging from 0 to 3 Tesla. The incident particle momentum varied from 10 to 300 GeV/c. The lateral shower development and particle multiplicity at several absorber depths have been determined. The measurements are compared with the predictions of Monte Carlo simulation programs

    Реконструкция Гусиноозерской ГРЭС

    Get PDF
    Выпускная квалификационная работа содержит 95 страниц, 39 рисунков, 34 таблицы, 6 источников литературы и всего 4 приложения. Ключевые слова: электрическая станция, элегазовый выключатель, турбогенератор, короткое замыкание, асинхронный режим, «Mustang».The Degree Work contains 95 pages, 39 pictures, 34 tables sheets, 6 information sourses and 4 application. Key words: power station, generator, short curcuit, Mustang, Sulfur hexafluoride switche

    Patterning and process parameter effects in 3D suspension near-field electrospinning of nanoarrays

    Get PDF
    The extracellular matrix (ECM) contains nanofibrous proteins and proteoglycans. Nanofabrication methods have received growing interest in recent years as a means of recapitulating these elements within the ECM. Near-field electrospinning (NFES) is a versatile fibre deposition method, capable of layer-by-layer nano-fabrication. The maximum layer height is generally limited in layer-by-layer NFES as a consequence of electrostatic effects of the polymer at the surface, due to residual charge and polymer dielectric properties. This restricts the total volume achievable by layer-by-layer techniques. Surpassing this restriction presents a complex challenge, leading to research innovations aimed at increasing patterning precision, and achieving a translation from 2D to 3D additive nanofabrication. Here we investigated a means of achieving this translation through the use of 3D electrode substrates. This was addressed by in-house developed technology in which selective laser melt manufactured standing pillar electrodes were combined with a direct suspension near-field electrospinning (SNFES) technique, which implements an automated platform to manoeuvre the pillar electrodes around the emitter in order to suspend fibres in the free space between the electrode support structures. In this study SNFES was used in multiple operation modes, investigating the effects of varying process parameters, as well as pattern variations on the suspended nanoarrays. Image analysis of the nanoarrays allowed for the assessment of fibre directionality, isotropy, and diameter; identifying optimal settings to generate fibres for tissue engineering applications
    corecore