80 research outputs found
Constraining the anisotropy structure of the crust by joint inversion of seismic reflection travel times and wave polarizations
Microseismic Full Waveform Modeling in Anisotropic Media with Moment Tensor Implementation
Seismic anisotropy which is common in shale and fractured rocks will cause travel-time and amplitude discrepancy in different propagation directions. For microseismic monitoring which is often implemented in shale or fractured rocks, seismic anisotropy needs to be carefully accounted for in source location and mechanism determination. We have developed an efficient finite-difference full waveform modeling tool with an arbitrary moment tensor source. The modeling tool is suitable for simulating wave propagation in anisotropic media for microseismic monitoring. As both dislocation and non-double-couple source are often observed in microseismic monitoring, an arbitrary moment tensor source is implemented in our forward modeling tool. The increments of shear stress are equally distributed on the staggered grid to implement an accurate and symmetric moment tensor source. Our modeling tool provides an efficient way to obtain the Green’s function in anisotropic media, which is the key of anisotropic moment tensor inversion and source mechanism characterization in microseismic monitoring. In our research, wavefields in anisotropic media have been carefully simulated and analyzed in both surface array and downhole array. The variation characteristics of travel-time and amplitude of direct P- and S-wave in vertical transverse isotropic media and horizontal transverse isotropic media are distinct, thus providing a feasible way to distinguish and identify the anisotropic type of the subsurface. Analyzing the travel-times and amplitudes of the microseismic data is a feasible way to estimate the orientation and density of the induced cracks in hydraulic fracturing. Our anisotropic modeling tool can be used to generate and analyze microseismic full wavefield with full moment tensor source in anisotropic media, which can help promote the anisotropic interpretation and inversion of field data
A review of a quarter century of International Workshops on Seismic Anisotropy in the crust (0IWSA–12IWSA)
Facies-constrained FWI: Toward application to reservoir characterization
© 2017 by The Society of Exploration Geophysicists. The most common approach to obtaining reservoir properties from seismic data exploits the amplitude variation with offset response of reflected waves. However, structural complexity and errors in the velocity model can severely reduce the quality of the inverted results. Full-waveform inversion (FWI) has shown a lot of promise in obtaining high-resolution velocity models for depth imaging. We propose supplementing FWI with rock-physics constraints obtained from borehole data to invert for reservoir properties. The constraints are imposed by adding appropriately weighted regularization terms to the objective function. The advantages of this technique over conventional FWI algorithms are shown by conducting synthetic tests for both isotropic and VTI (transversely isotropic with a vertical symmetry axis) models. The medium parameterization for FWI is selected using radiation (scattering) patterns of perturbations in the model parameters
Poynting and polarization vectors based wavefield decomposition and their application on elastic reverse time migration in 2D transversely isotropic media
- …
