67 research outputs found

    Luminance, colour, viewpoint and border enhanced disparity energy model

    Get PDF
    The visual cortex is able to extract disparity information through the use of binocular cells. This process is reflected by the Disparity Energy Model, which describes the role and functioning of simple and complex binocular neuron populations, and how they are able to extract disparity. This model uses explicit cell parameters to mathematically determine preferred cell disparities, like spatial frequencies, orientations, binocular phases and receptive field positions. However, the brain cannot access such explicit cell parameters; it must rely on cell responses. In this article, we implemented a trained binocular neuronal population, which encodes disparity information implicitly. This allows the population to learn how to decode disparities, in a similar way to how our visual system could have developed this ability during evolution. At the same time, responses of monocular simple and complex cells can also encode line and edge information, which is useful for refining disparities at object borders. The brain should then be able, starting from a low-level disparity draft, to integrate all information, including colour and viewpoint perspective, in order to propagate better estimates to higher cortical areas.Portuguese Foundation for Science and Technology (FCT); LARSyS FCT [UID/EEA/50009/2013]; EU project NeuroDynamics [FP7-ICT-2009-6, PN: 270247]; FCT project SparseCoding [EXPL/EEI-SII/1982/2013]; FCT PhD grant [SFRH-BD-44941-2008

    Neural network model of the primary visual cortex: From functional architecture to lateral connectivity and back

    Get PDF
    The role of intrinsic cortical dynamics is a debatable issue. A recent optical imaging study (Kenet et al., 2003) found that activity patterns similar to orientation maps (OMs), emerge in the primary visual cortex (V1) even in the absence of sensory input, suggesting an intrinsic mechanism of OM activation. To better understand these results and shed light on the intrinsic V1 processing, we suggest a neural network model in which OMs are encoded by the intrinsic lateral connections. The proposed connectivity pattern depends on the preferred orientation and, unlike previous models, on the degree of orientation selectivity of the interconnected neurons. We prove that the network has a ring attractor composed of an approximated version of the OMs. Consequently, OMs emerge spontaneously when the network is presented with an unstructured noisy input. Simulations show that the model can be applied to experimental data and generate realistic OMs. We study a variation of the model with spatially restricted connections, and show that it gives rise to states composed of several OMs. We hypothesize that these states can represent local properties of the visual scene

    Reparameterization of RNA χ Torsion Parameters for the AMBER Force Field and Comparison to NMR Spectra for Cytidine and Uridine

    Get PDF
    A reparameterization of the torsional parameters for the glycosidic dihedral angle, χ, for the AMBER99 force field in RNA nucleosides is used to provide a modified force field, AMBER99χ. Molecular dynamics simulations of cytidine, uridine, adenosine, and guanosine in aqueous solution using the AMBER99 and AMBER99χ force fields are compared with NMR results. For each nucleoside and force field, 10 individual molecular dynamics simulations of 30 ns each were run. For cytidine with AMBER99χ force field, each molecular dynamics simulation time was extended to 120 ns for convergence purposes. Nuclear magnetic resonance (NMR) spectroscopy, including one-dimensional (1D) 1H, steady-state 1D 1H nuclear Overhauser effect (NOE), and transient 1D 1H NOE, was used to determine the sugar puckering and preferred base orientation with respect to the ribose of cytidine and uridine. The AMBER99 force field overestimates the population of syn conformations of the base orientation and of C2′-endo sugar puckering of the pyrimidines, while the AMBER99χ force field’s predictions are more consistent with NMR results. Moreover, the AMBER99 force field prefers high anti conformations with glycosidic dihedral angles around 310° for the base orientation of purines. The AMBER99χ force field prefers anti conformations around 185°, which is more consistent with the quantum mechanical calculations and known 3D structures of folded ribonucleic acids (RNAs). Evidently, the AMBER99χ force field predicts the structural characteristics of ribonucleosides better than the AMBER99 force field and should improve structural and thermodynamic predictions of RNA structures

    Visual stimulus-induced changes in human near-infrared fundus reflectance

    No full text
    PURPOSE. Imaging studies from anesthetized feline, primate, and human retinas have revealed near-infrared fundus reflectance changes induced by visible light stimulation. In the present study, the spatial and temporal properties of similar changes were characterized in normal, awake humans. METHODS. Five normal human subjects were studied. A modified fundus camera was used to image changes in retinal reflectance of 780-nm near-infrared light imaged onto a 12-bit charge-coupled device (CCD) camera in response to a green (540 nm) visual stimulus. During 60 seconds of recording (frame rate, 3 Hz) 10 cycles were recorded, during each of which 3 seconds of blank and then 3 seconds of either vertical bar or blank stimulus was projected. The change in the average near-infrared reflectance of the stimulated retinal region relative to an equal-sized nonstimulated region (r is the ratio of reflectance between the two retinal areas) was analyzed with a mixed model for repeated measures. RESULTS. The mixed model showed a significant average decrease in r of 0.14% (95% CI, -0.25 to -0.03) over all subjects induced by bar stimulus cycles, with a gradual return to baseline after stimulus offset, compared with only a 0.04% (95% CI, -0.11 - +0.20) decrease in r induced by blank, nonstimulated cycles. The mixed model for individuals showed a decreasing linear trend in r over time during bar stimulation, but no decrease for blank cycles in three of five subjects. CONCLUSIONS. There was a localized decrease in reflectance in response to 780-nm near-infrared light in the retinal region exposed to a visual stimulus, which was significant in three of five subjects. It is presumed that the reflectance change represents the functional activity of the retina in response to a visual stimulus

    Circulating cancer cells (CCC) in breast cancer (BC) patients

    No full text
    corecore