35,485 research outputs found

    Convex relaxation of mixture regression with efficient algorithms

    Get PDF
    We develop a convex relaxation of maximum a posteriori estimation of a mixture of regression models. Although our relaxation involves a semidefinite matrix variable, we reformulate the problem to eliminate the need for general semidefinite programming. In particular, we provide two reformulations that admit fast algorithms. The first is a max-min spectral reformulation exploiting quasi-Newton descent. The second is a min-min reformulation consisting of fast alternating steps of closed-form updates. We evaluate the methods against Expectation-Maximization in a real problem of motion segmentation from video data

    An improved \eps expansion for three-dimensional turbulence: two-loop renormalization near two dimensions

    Full text link
    An improved \eps expansion in the dd-dimensional (d>2d > 2) stochastic theory of turbulence is constructed at two-loop order which incorporates the effect of pole singularities at d2d \to 2 in coefficients of the \eps expansion of universal quantities. For a proper account of the effect of these singularities two different approaches to the renormalization of the powerlike correlation function of the random force are analyzed near two dimensions. By direct calculation it is shown that the approach based on the mere renormalization of the nonlocal correlation function leads to contradictions at two-loop order. On the other hand, a two-loop calculation in the renormalization scheme with the addition to the force correlation function of a local term to be renormalized instead of the nonlocal one yields consistent results in accordance with the UV renormalization theory. The latter renormalization prescription is used for the two-loop renormalization-group analysis amended with partial resummation of the pole singularities near two dimensions leading to a significant improvement of the agreement with experimental results for the Kolmogorov constant.Comment: 23 pages, 2 figure

    Renormalization-group approach to the stochastic Navier--Stokes equation: Two-loop approximation

    Full text link
    The field theoretic renormalization group is applied to the stochastic Navier--Stokes equation that describes fully developed fluid turbulence. The complete two-loop calculation of the renormalization constant, the β\beta function, the fixed point and the ultraviolet correction exponent is performed. The Kolmogorov constant and the inertial-range skewness factor, derived to second order of the \eps expansion, are in a good agreement with the experiment. The possibility of the extrapolation of the \eps expansion beyond the threshold where the sweeping effects become important is demonstrated on the example of a Galilean-invariant quantity, the equal-time pair correlation function of the velocity field. The extension to the dd-dimensional case is briefly discussed.Comment: 20 pages, 3 figure

    Anomalous scaling of a passive scalar advected by the Navier--Stokes velocity field: Two-loop approximation

    Full text link
    The field theoretic renormalization group and operator product expansion are applied to the model of a passive scalar quantity advected by a non-Gaussian velocity field with finite correlation time. The velocity is governed by the Navier--Stokes equation, subject to an external random stirring force with the correlation function δ(tt)k4d2ϵ\propto \delta(t-t') k^{4-d-2\epsilon}. It is shown that the scalar field is intermittent already for small ϵ\epsilon, its structure functions display anomalous scaling behavior, and the corresponding exponents can be systematically calculated as series in ϵ\epsilon. The practical calculation is accomplished to order ϵ2\epsilon^{2} (two-loop approximation), including anisotropic sectors. Like for the well-known Kraichnan's rapid-change model, the anomalous scaling results from the existence in the model of composite fields (operators) with negative scaling dimensions, identified with the anomalous exponents. Thus the mechanism of the origin of anomalous scaling appears similar for the Gaussian model with zero correlation time and non-Gaussian model with finite correlation time. It should be emphasized that, in contrast to Gaussian velocity ensembles with finite correlation time, the model and the perturbation theory discussed here are manifestly Galilean covariant. The relevance of these results for the real passive advection, comparison with the Gaussian models and experiments are briefly discussed.Comment: 25 pages, 1 figur

    The H2+_2^+ molecular ion: a solution

    Full text link
    Combining the WKB expansion at large distances and Perturbation Theory at small distances it is constructed a compact uniform approximation for eigenfunctions. For lowest states 1s\si_{g} and 2p\si_{u} this approximation provides the relative accuracy 105\lesssim 10^{-5} (5 s.d.) for any real xx in eigenfunctions and for total energy E(R)E(R) it gives 10-11 s.d. for internuclear distances R[0,50]R \in [0,50]. Corrections to proposed approximations are evaluated. Separation constants and the oscillator strength for the transition 1s\si_{g} \rar 2p\si_{u} are calculated and compared with existing data.Comment: 16 pages, 4 figures, 6 tables, typos are corrected and small additions are inserted, to be published at JPB (fast track comm

    On Prospects for Exploration of Supersymmetry in Double Beta Decay Experiments

    Get PDF
    We analyze constraints on the parameters of the R-parity violating supersymmetry which can be extracted from non-observation of the neutrinoless nuclear double beta decay (0νββ0\nu\beta\beta) at a given half-life lower bound. Our analysis covers a large class of phenomenologically viable R-parity violating SUSY models. We introduce special characteristics: the SUSY sensitivity of a ββ\beta\beta decaying isotope and the SUSY reach of a 0νββ0\nu\beta\beta experiment. The former provides a physical criterion for a selection of the most promising isotopes for SUSY searches and the latter gives a measure of success for a 0νββ0\nu\beta\beta experiment in exploring the R-parity violating SUSY parameter space. On this basis we discuss prospects for exploration of supersymmetry in various 0νββ0\nu\beta\beta experiments.Comment: 11 pages, 5 Postscript figures. Modified and updated version is printed also in Proc. of NANP97 (JINR, Dubna, July 7--11, 1997): Phys. Atom Nucl, 1998, 61, vol. 6, p.1092--109

    A case of Penicillium marneffei osteomyelitis involving the axial skeleton

    Get PDF
    Fungal infection of bone by Penicillium marneffei is rare. We report on a case of Penicillium marneffei infection in a Filipino woman, which involved multiple soft-tissue abscesses and infection of the axial skeleton. Early diagnosis and treatment of this potentially reversible disease is emphasised. Such an approach is essential to prevent bony destruction from becoming too advanced and, more importantly, to prevent any damage to the spinal cord from occurring.published_or_final_versio
    corecore