74 research outputs found

    Stigma, identity and power:Managing stigmatized identities through discourse

    Get PDF
    We analyse how men incarcerated in Helsinki Prison managed, through talk, their stigmatized identities as prisoners. Three strategies are identified: ‘appropriation’ of the label ‘prisoner’; claiming coveted social identities; and representing oneself as a ‘good’ person. The research contribution we make is to show how inmates dealt with their self-defined stigmatized identities through discourse, and how these strategies were effects of power. We argue that stigmatized identities are best theorized in relation to individuals’ repertoires of other (non-stigmatized) identities that they may draw on to make supportive self-claims. Prisoners, like other kinds of organizational participants, we argue, often have considerable scope for managing diverse, fragile, perhaps even contradictory, understandings of their selves.</jats:p

    Growth Laws for Phase Ordering

    Full text link
    We determine the characteristic length scale, L(t)L(t), in phase ordering kinetics for both scalar and vector fields, with either short- or long-range interactions, and with or without conservation laws. We obtain L(t)L(t) consistently by comparing the global rate of energy change to the energy dissipation from the local evolution of the order parameter. We derive growth laws for O(n) models, and our results can be applied to other systems with similar defect structures.Comment: 12 pages, LaTeX, second tr

    The Energy-Scaling Approach to Phase-Ordering Growth Laws

    Full text link
    We present a simple, unified approach to determining the growth law for the characteristic length scale, L(t)L(t), in the phase ordering kinetics of a system quenched from a disordered phase to within an ordered phase. This approach, based on a scaling assumption for pair correlations, determines L(t)L(t) self-consistently for purely dissipative dynamics by computing the time-dependence of the energy in two ways. We derive growth laws for conserved and non-conserved O(n)O(n) models, including two-dimensional XY models and systems with textures. We demonstrate that the growth laws for other systems, such as liquid-crystals and Potts models, are determined by the type of topological defect in the order parameter field that dominates the energy. We also obtain generalized Porod laws for systems with topological textures.Comment: LATeX 18 pages (REVTeX macros), one postscript figure appended, REVISED --- rearranged and clarified, new paragraph on naive dimensional analysis at end of section I

    Phase ordering in bulk uniaxial nematic liquid crystals

    Full text link
    The phase-ordering kinetics of a bulk uniaxial nematic liquid crystal is addressed using techniques that have been successfully applied to describe ordering in the O(n) model. The method involves constructing an appropriate mapping between the order-parameter tensor and a Gaussian auxiliary field. The mapping accounts both for the geometry of the director about the dominant charge 1/2 string defects and biaxiality near the string cores. At late-times t following a quench, there exists a scaling regime where the bulk nematic liquid crystal and the three-dimensional O(2) model are found to be isomorphic, within the Gaussian approximation. As a consequence, the scaling function for order-parameter correlations in the nematic liquid crystal is exactly that of the O(2) model, and the length characteristic of the strings grows as t1/2t^{1/2}. These results are in accord with experiment and simulation. Related models dealing with thin films and monopole defects in the bulk are presented and discussed.Comment: 21 pages, 3 figures, REVTeX, submitted to Phys. Rev.

    Fluctuations and defect-defect correlations in the ordering kinetics of the O(2) model

    Full text link
    The theory of phase ordering kinetics for the O(2) model using the gaussian auxiliary field approach is reexamined from two points of view. The effects of fluctuations about the ordering field are included and we organize the theory such that the auxiliary field correlation function is analytic in the short-scaled distance (x) expansion. These two points are connected and we find in the refined theory that the divergence at the origin in the defect-defect correlation function g~(x)\tilde{g}(x) obtained in the original theory is removed. Modifications to the order-parameter autocorrelation exponent λ\lambda are computed.Comment: 29 pages, REVTeX, to be published in Phys. Rev. E. Minor grammatical/syntax changes from the origina

    Vortex annihilation in the ordering kinetics of the O(2) model

    Full text link
    The vortex-vortex and vortex-antivortex correlation functions are determined for the two-dimensional O(2) model undergoing phase ordering. We find reasonably good agreement with simulation results for the vortex-vortex correlation function where there is a short-scaled distance depletion zone due to the repulsion of like-signed vortices. The vortex-antivortex correlation function agrees well with simulation results for intermediate and long-scaled distances. At short-scaled distances the simulations show a depletion zone not seen in the theory.Comment: 28 pages, REVTeX, submitted to Phys. Rev.

    Grain boundary pinning and glassy dynamics in stripe phases

    Full text link
    We study numerically and analytically the coarsening of stripe phases in two spatial dimensions, and show that transient configurations do not achieve long ranged orientational order but rather evolve into glassy configurations with very slow dynamics. In the absence of thermal fluctuations, defects such as grain boundaries become pinned in an effective periodic potential that is induced by the underlying periodicity of the stripe pattern itself. Pinning arises without quenched disorder from the non-adiabatic coupling between the slowly varying envelope of the order parameter around a defect, and its fast variation over the stripe wavelength. The characteristic size of ordered domains asymptotes to a finite value $R_g \sim \lambda_0\ \epsilon^{-1/2}\exp(|a|/\sqrt{\epsilon}),where, where \epsilon\ll 1isthedimensionlessdistanceawayfromthreshold, is the dimensionless distance away from threshold, \lambda_0thestripewavelength,and the stripe wavelength, and a$ a constant of order unity. Random fluctuations allow defect motion to resume until a new characteristic scale is reached, function of the intensity of the fluctuations. We finally discuss the relationship between defect pinning and the coarsening laws obtained in the intermediate time regime.Comment: 17 pages, 8 figures. Corrected version with one new figur

    Breakdown of Scale Invariance in the Phase Ordering of Fractal Clusters

    Full text link
    Our numerical simulations with the Cahn-Hilliard equation show that coarsening of fractal clusters (FCs) is not a scale-invariant process. On the other hand, a typical coarsening length scale and interfacial area of the FC exhibit power laws in time, while the mass fractal dimension remains invariant. The initial value of the lower cutoff is a relevant length scale. A sharp-interface model is formulated that can follow the whole dynamics of a diffusion controlled growth, coarsening, fragmentation and approach to equilibrium in a system with conserved order parameter.Comment: 4 pages, 4 figures, RevTex, submitted to PR

    Dynamics of orientational ordering in fluid membranes

    Get PDF
    We study the dynamics of orientational phase ordering in fluid membranes. Through numerical simulation we find an unusually slow coarsening of topological texture, which is limited by subdiffusive propagation of membrane curvature. The growth of the orientational correlation length Ο\xi obeys a power law Ο∝tw\xi \propto t^w with w<1/4w < 1/4 in the late stage. We also discuss defect profiles and correlation patterns in terms of long-range interaction mediated by curvature elasticity.Comment: 5 pages, 3 figures (1 in color); Eq.(9) correcte

    Rocketborne instrument to search for infrared emission from baryonic dark matter in galactic halos

    Get PDF
    We describe the design and performance of the near IR telescope experiment (NITE), a rocket-borne instrument designed to search for IR emission from baryonic dark matter in the halos of nearby edge-on spiral galaxies. A 256 X 256 InSb array at the focus of a 16.5 cm liquid-helium- cooled telescope achieves near-background-limited sensitivity in a 3.5-5.5 micrometers waveband where the local foreground from zodiacal emission is at a minimum. This experiment represents the first scientific application of a low-background IR InSb array, a precursor to the InSb arrays intended for SIRTF, in a space-borne observation. We describe the flight performance of the instrument and preliminary scientific result from an observation of NGC 4565
    • 

    corecore