2,841 research outputs found

    Properties of Color-Coulomb String Tension

    Get PDF
    We study the properties of the color-Coulomb string tension obtained from the instantaneous part of gluon propagators in Coulomb gauge using quenched SU(3) lattice simulation. In the confinement phase, the dependence of the color-Coulomb string tension on the QCD coupling constant is smaller than that of the Wilson loop string tension. On the other hand, in the deconfinement phase, the color-Coulomb string tension does not vanish even for T/Tc=1∼5T/T_c = 1 \sim 5, the temperature dependence of which is comparable with the magnetic scaling, dominating the high temperature QCD. Thus, the color-Coulomb string tension is not an order parameter of QGP phase transition.Comment: 17 pages, 5 figures; one new figure added, typos corrected, version to appear in PR

    Pionic Contribution to Neutrinoless Double Beta Decay

    Full text link
    It is well known that neutrinoless double decay is going to play a crucial role in settling the neutrino properties, which cannot be extracted from the neutrino oscillation data. It is, in particular, expected to settle the absolute scale of neutrino mass and determine whether the neutrinos are Majorana particles, i.e. they coincide with their own antiparticles. In order to extract the average neutrino mass from the data one must be able to estimate the contribution all possible high mass intermediate particles. The latter, which occur in practically all extensions of the standard model, can, in principle, be differentiated from the usual mass term, if data from various targets are available. One, however, must first be able reliably calculate the corresponding nuclear matrix elements. Such calculations are extremely difficult since the effective transition operators are very short ranged. For such operators processes like pionic contributions, which are usually negligible, turn out to be dominant. We study such an effect in a non relativistic quark model for the pion and the nucleon.Comment: 7 figures, one table, 20 LaTex page

    Effects of quark matter and color superconductivity in compact stars

    Full text link
    The equation of state for quark matter is derived for a nonlocal, chiral quark model within the mean field approximation. We investigate the effects of a variation of the form factors of the interaction on the phase diagram of quark matter under the condition of beta-equilibrium and charge neutrality. Special emphasis is on the occurrence of a diquark condensate which signals a phase transition to color superconductivity and its effects on the equation of state. We calculate the quark star configurations by solving the Tolman- Oppenheimer- Volkoff equations and obtain for the transition from a hot, normal quark matter core of a protoneutron star to a cool diquark condensed one a release of binding energy of the order of Delta M c^2 ~ 10^{53} erg. We study the consequences of antineutrino trapping in hot quark matter for quark star configurations with possible diquark condensation and discuss the claim that this energy could serve as an engine for explosive phenomena. A "phase diagram" for rotating compact stars (angular velocity-baryon mass plane) is suggested as a heuristic tool for obtaining constraints on the equation of state of QCD at high densities. It has a critical line dividing hadronic from quark core stars which is correlated with a local maximum of the moment of inertia and can thus be subject to experimental verification by observation of the rotational behavior of accreting compact stars.Comment: 14 pages, 12 figures, Talk given at 2nd International Workshop on Hadron Physics: Effective Theories of Low-Energy QCD, Coimbra, Portugal, 25-29 Sep 200

    Pentaquark Θ+\Theta^+ in nuclear matter and Θ+\Theta^+ hypernuclei

    Full text link
    We study the properties of the Θ+\Theta^+ in nuclear matter and Θ+\Theta^+ hypernuclei within the quark mean-field (QMF) model, which has been successfully used for the description of ordinary nuclei and Λ\Lambda hypernuclei. With the assumption that the non-strange mesons couple only to the uu and dd quarks inside baryons, a sizable attractive potential of the Θ+\Theta^+ in nuclear matter is achieved as a consequence of the cancellation between the attractive scalar potential and the repulsive vector potential. We investigate the Θ+\Theta^+ single-particle energies in light, medium, and heavy nuclei. More bound states are obtained in Θ+\Theta^+ hypernuclei in comparison with those in Λ\Lambda hypernuclei.Comment: 16 pages, 5 figure

    Pionic Atom Spectroscopy in the (d,3He) reaction at finite angles

    Full text link
    We study the formation of deeply bound pionic atoms in the (d,3He) reactions theoretically and show the energy spectra of the emitted 3He at finite angles, which are expected to be observed experimentally. We find that the different combinations of the pion-bound and neutron-hole states dominate the spectra at different scattering angles because of the matching condition of the reaction. We conclude that the observation of the (d,3He) reaction at finite angles will provide the systematic information of the pionic bound states in each nucleus and will help to develop the study of the pion properties and the partial restoration of chiral symmetry in nuclei.Comment: 7 pages, 4 figures, 1 tabl

    Description of Drip-Line Nuclei within Relativistic Mean-Field Plus BCS Approach

    Full text link
    Recently it has been demonstrated, considering Ni and Ca isotopes as prototypes, that the relativistic mean-field plus BCS (RMF+BCS) approach wherein the single particle continuum corresponding to the RMF is replaced by a set of discrete positive energy states for the calculation of pairing energy provides a good approximation to the full relativistic Hartree-Bogoliubov (RHB) description of the ground state properties of the drip-line neutron rich nuclei. The applicability of RMF+BCS is essentially due to the fact that the main contribution to the pairing correlations is provided by the low-lying resonant states. General validity of this approach is demonstrated by the detailed calculations for the ground state properties of the chains of isotopes of O, Ca, Ni, Zr, Sn and Pb nuclei. The TMA and NL-SH force parameter sets have been used for the effective mean-field Lagrangian. Comprehensive results for the two neutron separation energy, rms radii, single particle pairing gaps and pairing energies etc. are presented. The Ca isotopes are found to exhibit distinct features near the neutron drip line whereby it is found that further addition of neutrons causes a rapid increase in the neutron rms radius with almost no increase in the binding energy, indicating the occurrence of halos. A comparison of these results with the available experimental data and with the recent continuum relativistic Hartree-Bogoliubov (RCHB) calculations amply demonstrates the validity and usefulness of this fast RMF+BCS approach.Comment: 59 pages, 40 figure
    • …
    corecore