2,911 research outputs found

    Seed Longevity of Melaleuca quinquenervia: A Burial Experiment in South Florida

    Get PDF
    Burial and removal techniques with seed bags were used to examine the viability and longevity of Melaleuca quinquenervia seeds at four field sites representing different soil types and hydrological conditions in South Florida. Seed viability was determined over different burial durations in the soil through a combination of germination tests and 2,3,5-triphenyl- tetrazolium chloride (TTC) treatments. Control seeds kept dry at 25 C in the laboratory maintained same viability of ca. 15% over the 3-year study. In the field, seed viability decreased with increased burial duration.(PDF has 4 pages.

    Disruption of Vitamin D and Calcium Signaling in Keratinocytes Predisposes to Skin Cancer.

    Get PDF
    1,25 dihydroxyvitamin D (1,25(OH)2D), the active metabolite of vitamin D, and calcium regulate epidermal differentiation. 1,25(OH)2D exerts its effects through the vitamin D receptor (VDR), a transcription factor in the nuclear hormone receptor family, whereas calcium acts through the calcium sensing receptor (Casr), a membrane bound member of the G protein coupled receptor family. We have developed mouse models in which the Vdr and Casr have been deleted in the epidermis ((epid) Vdr (-∕-) and (epid) Casr (-∕-)). Both genotypes show abnormalities in calcium induced epidermal differentiation in vivo and in vitro, associated with altered hedgehog (HH) and β-catenin signaling that when abnormally expressed lead to basal cell carcinomas (BCC) and trichofolliculomas, respectively. The Vdr (-∕-) mice are susceptible to tumor formation following UVB or chemical carcinogen exposure. More recently we found that the keratinocytes from these mice over express long non-coding RNA (lncRNA) oncogenes such as H19 and under express lncRNA tumor suppressors such as lincRNA-21. Spontaneous tumors have not been observed in either the (epid) Vdr (-∕-) or (epid) Casr (-∕-). But in mice with epidermal specific deletion of both Vdr and Casr ((epid) Vdr (-∕-)/(epid) Casr (-∕-) [DKO]) tumor formation occurs spontaneously when the DKO mice are placed on a low calcium diet. These results demonstrate important interactions between vitamin D and calcium signaling through their respective receptors that lead to cancer when these signals are disrupted. The roles of the β-catenin, hedgehog, and lncRNA pathways in predisposing the epidermis to tumor formation when vitamin D and calcium signaling are disrupted will be discussed

    An Improved molecular tool for distinguishing monoecious and dioedious Hydrilla

    Get PDF
    Two biotypes of hydrilla [Hydrilla verticillata(L.f.) Royle] occur in the United States, a dioecious type centered in the southeast and a monoecious type in the central Atlantic and northeastern states. Ecosystem managers need tools to distinguish the types as the ranges of each type expand and begin to overlap. A molecular tool using the randomly amplified polymorphic DNA (RAPD) procedure is available but its use is limited by a need for reference samples. We describe an alternative molecular tool which uses “universal primers” to sequence the trnL intron and trnL-F intergenic spacer of the chloroplast genome. This sequence yields three differences between the biotypes (two gaps and one single nucleotide polymorphism). A primer has been designed which ends in a gap that shows up only in the dioecious plant. A polymerase chain reaction (PCR) using this primer produces a product for the monoecious but not the dioecious plant

    Equidistribution of polynomial sequences in function fields, with applications

    Get PDF
    We prove a function field analog of Weyl's classical theorem on equidistribution of polynomial sequences. Our result covers the case when the degree of the polynomial is greater than or equal to the characteristic of the field, which is a natural barrier when applying the Weyl differencing process to function fields. We also discuss applications to van der Corput and intersective sets in function fields.Comment: 24 page

    Nanolasers grown on silicon

    Full text link
    Integration of optical interconnects with silicon-based electronics can address the growing limitations facing chip-scale data transport as microprocessors become progressively faster. However, material lattice mismatch and incompatible growth temperatures have fundamentally limited monolithic integration of lasers onto silicon substrates until now. Here, we use a novel growth scheme to overcome this roadblock and directly grow on-chip InGaAs nanopillar lasers, demonstrating the potency of bottom-up nano-optoelectronic integration. Unique helically-propagating cavity modes are employed to strongly confine light within subwavelength nanopillars despite low refractive index contrast between InGaAs and silicon. These modes thereby provide an avenue for engineering on-chip nanophotonic devices such as lasers. Nanopillar lasers are as-grown on silicon, offer tiny footprints and scalability, and are thereby particularly suited to high-density optoelectronics. They may ultimately form the basis of the missing monolithic light sources needed to bridge the existing gap between photonic and electronic circuits.Comment: submitted to Nature Photonic

    High fidelity transfer and storage of photon states in a single nuclear spin

    Full text link
    Building a quantum repeater network for long distance quantum communication requires photons and quantum registers that comprise qubits for interaction with light, good memory capabilities and processing qubits for storage and manipulation of photons. Here we demonstrate a key step, the coherent transfer of a photon in a single solid-state nuclear spin qubit with an average fidelity of 98% and storage over 10 seconds. The storage process is achieved by coherently transferring a photon to an entangled electron-nuclear spin state of a nitrogen vacancy centre in diamond, confirmed by heralding through high fidelity single-shot readout of the electronic spin states. Stored photon states are robust against repetitive optical writing operations, required for repeater nodes. The photon-electron spin interface and the nuclear spin memory demonstrated here constitutes a major step towards practical quantum networks, and surprisingly also paves the way towards a novel entangled photon source for photonic quantum computing
    corecore