368 research outputs found

    Study of the performance and capability of the new ultra-fast 2 GSample/s FADC data acquisition system of the MAGIC telescope

    Full text link
    In February 2007 the MAGIC Air Cherenkov Telescope for gamma-ray astronomy was fully upgraded with an ultra fast 2 GSamples/s digitization system. Since the Cherenkov light flashes are very short, a fast readout can minimize the influence of the background from the light of the night sky. Also, the time structure of the event is an additional parameter to reduce the background from unwanted hadronic showers. An overview of the performance of the new system and its impact on the sensitivity of the MAGIC instrument will be presented.Comment: Contribution to the 30th ICRC, Merida Mexico, July 2007 on behalf of the MAGIC Collaboratio

    MARS, the MAGIC Analysis and Reconstruction Software

    Full text link
    With the commissioning of the second MAGIC gamma-ray Cherenkov telescope situated close to MAGIC-I, the standard analysis package of the MAGIC collaboration, MARS, has been upgraded in order to perform the stereoscopic reconstruction of the detected atmospheric showers. MARS is a ROOT-based code written in C++, which includes all the necessary algorithms to transform the raw data recorded by the telescopes into information about the physics parameters of the observed targets. An overview of the methods for extracting the basic shower parameters is presented, together with a description of the tools used in the background discrimination and in the estimation of the gamma-ray source spectra.Comment: 4 pages, 0 figures, submitted to the 31st International Cosmic Ray Conference, {\L}odz 200

    A novel background reduction strategy for high level triggers and processing in gamma-ray Cherenkov detectors

    Full text link
    Gamma ray astronomy is now at the leading edge for studies related both to fundamental physics and astrophysics. The sensitivity of gamma detectors is limited by the huge amount of background, constituted by hadronic cosmic rays (typically two to three orders of magnitude more than the signal) and by the accidental background in the detectors. By using the information on the temporal evolution of the Cherenkov light, the background can be reduced. We will present here the results obtained within the MAGIC experiment using a new technique for the reduction of the background. Particle showers produced by gamma rays show a different temporal distribution with respect to showers produced by hadrons; the background due to accidental counts shows no dependence on time. Such novel strategy can increase the sensitivity of present instruments.Comment: 4 pages, 3 figures, Proc. of the 9th Int. Syposium "Frontiers of Fundamental and Computational Physics" (FFP9), (AIP, Melville, New York, 2008, in press

    Investigating the peculiar emission from the new VHE gamma-ray source H1722+119

    Get PDF
    The MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescopes observed the BL Lac object H1722+119 (redshift unknown) for six consecutive nights between 2013 May 17 and 22, for a total of 12.5 h. The observations were triggered by high activity in the optical band measured by the KVA (Kungliga Vetenskapsakademien) telescope. The source was for the first time detected in the very high energy (VHE, E>100E > 100 GeV) γ\gamma-ray band with a statistical significance of 5.9 σ\sigma. The integral flux above 150 GeV is estimated to be (2.0±0.5)(2.0\pm 0.5) per cent of the Crab Nebula flux. We used contemporaneous high energy (HE, 100 MeV <E<100 < E < 100 GeV) γ\gamma-ray observations from Fermi-LAT (Large Area Telescope) to estimate the redshift of the source. Within the framework of the current extragalactic background light models, we estimate the redshift to be z=0.34±0.15z = 0.34 \pm 0.15. Additionally, we used contemporaneous X-ray to radio data collected by the instruments on board the Swift satellite, the KVA, and the OVRO (Owens Valley Radio Observatory) telescope to study multifrequency characteristics of the source. We found no significant temporal variability of the flux in the HE and VHE bands. The flux in the optical and radio wavebands, on the other hand, did vary with different patterns. The spectral energy distribution (SED) of H1722+119 shows surprising behaviour in the 3×10141018\sim 3\times10^{14} - 10^{18} Hz frequency range. It can be modelled using an inhomogeneous helical jet synchrotron self-Compton model.Comment: 12 pages, 5 figures, 2 table

    MAGIC observations of MWC 656, the only known Be/BH system

    Get PDF
    Context: MWC 656 has recently been established as the first observationally detected high-mass X-ray binary system containing a Be star and a black hole (BH). The system has been associated with a gamma-ray flaring event detected by the AGILE satellite in July 2010. Aims: Our aim is to evaluate if the MWC 656 gamma-ray emission extends to very high energy (VHE > 100 GeV) gamma rays. Methods. We have observed MWC 656 with the MAGIC telescopes for \sim23 hours during two observation periods: between May and June 2012 and June 2013. During the last period, observations were performed contemporaneously with X-ray (XMM-Newton) and optical (STELLA) instruments. Results: We have not detected the MWC 656 binary system at TeV energies with the MAGIC Telescopes in either of the two campaigns carried out. Upper limits (ULs) to the integral flux above 300 GeV have been set, as well as differential ULs at a level of \sim5% of the Crab Nebula flux. The results obtained from the MAGIC observations do not support persistent emission of very high energy gamma rays from this system at a level of 2.4% the Crab flux.Comment: Accepted for publication in A&A. 5 pages, 2 figures, 2 table

    Unfolding of differential energy spectra in the MAGIC experiment

    Get PDF
    The paper describes the different methods, used in the MAGIC experiment, to unfold experimental energy distributions of cosmic ray particles (gamma-rays). Questions and problems related to the unfolding are discussed. Various procedures are proposed which can help to make the unfolding robust and reliable. The different methods and procedures are implemented in the MAGIC software and are used in most of the analyses.Comment: Submitted to NIM
    corecore