178 research outputs found
Pressure and temperature driven phase transitions in HgTe quantum wells
We present theoretical investigations of pressure and temperature driven
phase transitions in HgTe quantum wells grown on CdTe buffer. Using the 8-band
\textbf{kp} Hamiltonian we calculate evolution of energy band structure
at different quantum well width with hydrostatic pressure up to 20 kBar and
temperature ranging up 300 K. In particular, we show that in addition to
temperature, tuning of hydrostatic pressure allows to drive transitions between
semimetal, band insulator and topological insulator phases. Our realistic band
structure calculations reveal that the band inversion under hydrostatic
pressure and temperature may be accompanied by non-local overlapping between
conduction and valence bands. The pressure and temperature phase diagrams are
presented.Comment: 9 pages, 8 figures + Supplemental material (5 pages
Terahertz Radiation Detection by Field Effect Transistor in Magnetic Field
We report on terahertz radiation detection with InGaAs/InAlAs Field Effect
Transistors in quantizing magnetic field. The photovoltaic detection signal is
investigated at 4.2 K as a function of the gate voltage and magnetic field.
Oscillations analogous to the Shubnikov-de Haas oscillations, as well as their
strong enhancement at the cyclotron resonance, are observed. The results are
quantitatively described by a recent theory, showing that the detection is due
to rectification of the terahertz radiation by plasma waves related
nonlinearities in the gated part of the channel.Comment: 4 pages, 3 figure
Field Effect Transistors for Terahertz Detection: Physics and First Imaging Applications
Resonant frequencies of the two-dimensional plasma in FETs increase with the
reduction of the channel dimensions and can reach the THz range for sub-micron
gate lengths. Nonlinear properties of the electron plasma in the transistor
channel can be used for the detection and mixing of THz frequencies. At
cryogenic temperatures resonant and gate voltage tunable detection related to
plasma waves resonances, is observed. At room temperature, when plasma
oscillations are overdamped, the FET can operate as an efficient broadband THz
detector. We present the main theoretical and experimental results on THz
detection by FETs in the context of their possible application for THz imaging.Comment: 22 pages, 12 figures, review pape
Room Temperature Coherent and Voltage Tunable Terahertz Emission from Nanometer-Sized Field Effect Transistors
We report on reflective electro-optic sampling measurements of TeraHertz
emission from nanometer-gate-length InGaAs-based high electron mobility
transistors. The room temperature coherent gate-voltage tunable emission is
demonstrated. We establish that the physical mechanism of the coherent
TeraHertz emission is related to the plasma waves driven by simultaneous
current and optical excitation. A significant shift of the plasma frequency and
the narrowing of the emission with increasing channel's current are observed
and explained as due to the increase of the carriers density and drift
velocity.Comment: 3 figure
Electrical excitation of shock and soliton-like waves in two-dimensional electron channels
We study electrical excitation of nonlinear plasma waves in heterostructures
with two-dimensional electron channels and with split gates, and the
propagation of these waves using hydrodynamic equations for electron transport
coupled with two-dimensional Poisson equation for self-consistent electric
potential. The term related to electron collisions with impurities and phonons
as well as the term associated with viscosity are included into the
hydrodynamic equations. We demonstrate the formation of shock and soliton-like
waves as a result of the evolution of strongly nonuniform initial electron
density distribution. It is shown that the shock wave front and the shape of
soliton-like pulses pronouncedly depend on the coefficient of viscosity, the
thickness of the gate layer and the nonuniformity of the donor distribution
along the channel. The electron collisions result in damping of the shock and
soliton-like waves, while they do not markedly affect the thickness of the
shock wave front.Comment: 9 pages, 11 figure
Magneto-optical signature of massless Kane electrons in Cd3As2
We report on optical reflectivity experiments performed on Cd3As2 over a
broad range of photon energies and magnetic fields. The observed response
clearly indicates the presence of 3D massless charge carriers. The specific
cyclotron resonance absorption in the quantum limit implies that we are probing
massless Kane electrons rather than symmetry-protected 3D Dirac particles. The
latter may appear at a smaller energy scale and are not directly observed in
our infrared experiments.Comment: 5 pages, 4 figures + supplementary materials (17 pages), to be
published in Phys. Rev. Let
Temperature-driven single-valley Dirac fermions in HgTe quantum wells
We report on temperature-dependent magnetospectroscopy of two HgTe/CdHgTe
quantum wells below and above the critical well thickness . Our results,
obtained in magnetic fields up to 16 T and temperature range from 2 K to 150 K,
clearly indicate a change of the band-gap energy with temperature. The quantum
well wider than evidences a temperature-driven transition from
topological insulator to semiconductor phases. At the critical temperature of
90 K, the merging of inter- and intra-band transitions in weak magnetic fields
clearly specifies the formation of gapless state, revealing the appearance of
single-valley massless Dirac fermions with velocity of
ms. For both quantum wells, the energies extracted from
experimental data are in good agreement with calculations on the basis of the
8-band Kane Hamiltonian with temperature-dependent parameters.Comment: 5 pages, 3 figures and Supplemental Materials (4 pages
Temperature-dependent magnetospectroscopy of HgTe quantum wells
We report on magnetospectroscopy of HgTe quantum wells in magnetic fields up
to 45 T in temperature range from 4.2 K up to 185 K. We observe intra- and
inter-band transitions from zero-mode Landau levels, which split from the
bottom conduction and upper valence subbands, and merge under the applied
magnetic field. To describe experimental results, realistic
temperature-dependent calculations of Landau levels have been performed. We
show that although our samples are topological insulators at low temperatures
only, the signature of such phase persists in optical transitions at high
temperatures and high magnetic fields. Our results demonstrate that
temperature-dependent magnetospectroscopy is a powerful tool to discriminate
trivial and topological insulator phases in HgTe quantum wells
- …
