15,253 research outputs found

    Effects of Ram-Pressure from Intracluster Medium on the Star Formation Rate of Disk Galaxies in Clusters of Galaxies

    Get PDF
    Using a simple model of molecular cloud evolution, we have quantitatively estimated the change of star formation rate (SFR) of a disk galaxy falling radially into the potential well of a cluster of galaxies. The SFR is affected by the ram-pressure from the intracluster medium (ICM). As the galaxy approaches the cluster center, the SFR increases to twice the initial value, at most, in a cluster with high gas density and deep potential well, or with a central pressure of ∼10−2cm−3keV\sim 10^{-2} cm^{-3} keV because the ram-pressure compresses the molecular gas of the galaxy. However, this increase does not affect the color of the galaxy significantly. Further into the central region of the cluster (≲1\lesssim 1 Mpc from the center), the SFR of the disk component drops rapidly due to the effect of ram-pressure stripping. This makes the color of the galaxy redder and makes the disk dark. These effects may explain the observed color, morphology distribution and evolution of galaxies in high-redshift clusters. By contrast, in a cluster with low gas density and shallow potential well, or the central pressure of ∼10−3cm−3keV\sim 10^{-3} cm^{-3} keV, the SFR of a radially infalling galaxy changes less significantly, because neither ram-pressure compression nor stripping is effective. Therefore, the color of galaxies in poor clusters is as blue as that of field galaxies, if other environmental effects such as galaxy-galaxy interaction are not effective. The predictions of the model are compared with observations.Comment: 19 pages, 9 figures, to appear in Ap

    The Amino Terminus of the Yeast F_1-ATPase β-Subunit Precursor Functions as a Mitochondrial Import Signal

    Get PDF
    The ATP2 gene of Saccharomyces cerevisiae codes for the cytoplasmically synthesized beta-subunit protein of the mitochondrial F1-ATPase. To define the amino acid sequence determinants necessary for the in vivo targeting and import of this protein into mitochondria, we have constructed gene fusions between the ATP2 gene and either the Escherichia coli lacZ gene or the S. cerevisiae SUC2 gene (which codes for invertase). The ATP2-lacZ and ATP2-SUC2 gene fusions code for hybrid proteins that are efficiently targeted to yeast mitochondria in vivo. The mitochondrially associated hybrid proteins fractionate with the inner mitochondrial membrane and are resistant to proteinase digestion in the isolated organelle. Results obtained with the gene fusions and with targeting-defective ATP2 deletion mutants provide evidence that the amino-terminal 27 amino acids of the beta-subunit protein precursor are sufficient to direct both specific sorting of this protein to yeast mitochondria and its import into the organelle. Also, we have observed that certain of the mitochondrially associated Atp2-LacZ and Atp2-Suc2 hybrid proteins confer a novel respiration-defective phenotype to yeast cells

    Location of the Multicritical Point for the Ising Spin Glass on the Triangular and Hexagonal Lattices

    Full text link
    A conjecture is given for the exact location of the multicritical point in the phase diagram of the +/- J Ising model on the triangular lattice. The result p_c=0.8358058 agrees well with a recent numerical estimate. From this value, it is possible to derive a comparable conjecture for the exact location of the multicritical point for the hexagonal lattice, p_c=0.9327041, again in excellent agreement with a numerical study. The method is a variant of duality transformation to relate the triangular lattice directly with its dual triangular lattice without recourse to the hexagonal lattice, in conjunction with the replica method.Comment: 9 pages, 1 figure; Minor corrections in notatio

    Statistical mechanical analysis of the linear vector channel in digital communication

    Full text link
    A statistical mechanical framework to analyze linear vector channel models in digital wireless communication is proposed for a large system. The framework is a generalization of that proposed for code-division multiple-access systems in Europhys. Lett. 76 (2006) 1193 and enables the analysis of the system in which the elements of the channel transfer matrix are statistically correlated with each other. The significance of the proposed scheme is demonstrated by assessing the performance of an existing model of multi-input multi-output communication systems.Comment: 15 pages, 2 figure

    Ultra High Energy Cosmic Rays: Anisotropies and Spectrum

    Full text link
    The recent results of the Pierre Auger Observatory on the possible correlation of Ultra High Energy Cosmic Rays events and several nearby discrete sources could be the starting point of a new era with charged particles astronomy. In this paper we introduce a simple model to determine the effects of any local distribution of sources on the expected flux. We consider two populations of sources: faraway sources uniformly distributed and local point sources. We study the effects on the expected flux of the local distribution of sources, referring also to the set of astrophysical objects whose correlation with the Auger events is experimentally claimed.Comment: 17 pages, 13 eps figures, version accepted for publication in Astroparticle Physic

    Retired A Stars: The Effect of Stellar Evolution on the Mass Estimates of Subgiants

    Get PDF
    Doppler surveys have shown that the occurrence rate of Jupiter-mass planets appears to increase as a function of stellar mass. However, this result depends on the ability to accurately measure the masses of evolved stars. Recently, Lloyd (2011) called into question the masses of subgiant stars targeted by Doppler surveys. Lloyd argues that very few observable subgiants have masses greater than 1.5 Msun, and that most of them have masses in the range 1.0-1.2 Msun. To investigate this claim, we use Galactic stellar population models to generate an all-sky distribution of stars. We incorporate the effects that make massive subgiants less numerous, such as the initial mass function and differences in stellar evolution timescales. We find that these effects lead to negligibly small systematic errors in stellar mass estimates, in contrast to the roughly 50% errors predicted by Lloyd. Additionally, our simulated target sample does in fact include a significant fraction of stars with masses greater than 1.5 Msun, primarily because the inclusion of an apparent magnitude limit results in a Malmquist-like bias toward more massive stars, in contrast to the volume-limited simulations of Lloyd. The magnitude limit shifts the mean of our simulated distribution toward higher masses and results in a relatively smaller number of evolved stars with masses in the range 1.0-1.2 Msun. We conclude that, within the context of our present-day understanding of stellar structure and evolution, many of the subgiants observed in Doppler surveys are indeed as massive as main-sequence A stars.Comment: Accepted to ApJ, 5 pages, 3 figures; changed title, reworded introduction and conclusion

    Detection of Gravitational Redshift on the Solar Disk by Using Iodine-Cell Technique

    Full text link
    With an aim to examine whether the predicted solar gravitational redshift can be observationally confirmed under the influence of the convective Doppler shift due to granular motions, we attempted measuring the absolute spectral line-shifts on a large number of points over the solar disk based on an extensive set of 5188-5212A region spectra taken through an iodine-cell with the Solar Domeless Telescope at Hida Observatory. The resulting heliocentric line shifts at the meridian line (where no rotational shift exists), which were derived by finding the best-fit parameterized model spectrum with the observed spectrum and corrected for the earth's motion, turned out to be weakly position-dependent as ~ +400 m/s near the disk center and increasing toward the limb up to ~ +600 m/s (both with a standard deviation of sigma ~ 100 m/s). Interestingly, this trend tends to disappear when the convectiveshift due to granular motions (~-300 m/s at the disk center and increasing toward the limb; simulated based on the two-component model along with the empirical center-to-limb variation) is subtracted, finally resulting in the averaged shift of 698 m/s (sigma = 113 m/s). Considering the ambiguities involved in the absolute wavelength calibration or in the correction due to convective Doppler shifts (at least several tens m/s, or more likely up to <~100 m/s), we may regard that this value is well consistent with the expected gravitational redshift of 633 m/s.Comment: 28 pages, 12 figures, electronic materials as ancillary data (table3, table 4, ReadMe); accepted for publication in Solar Physic

    Heavy fermion fluid in high magnetic fields: an infrared study of CeRu4_4Sb12_{12}

    Full text link
    We report a comprehensive infrared magneto-spectroscopy study of CeRu4_4Sb12_{12} compound revealing quasiparticles with heavy effective mass m∗^*, with a detailed analysis of optical constants in fields up to 17 T. We find that the applied magnetic field strongly affects the low energy excitations in the system. In particular, the magnitude of m∗^* ≃\simeq 70 mb_b (mb_b is the quasiparticle band mass) at 10 K is suppressed by as much as 25 % at 17 T. This effect is in quantitative agreement with the mean-field solution of the periodic Anderson model augmented with a Zeeman term
    • …
    corecore