15,253 research outputs found
Effects of Ram-Pressure from Intracluster Medium on the Star Formation Rate of Disk Galaxies in Clusters of Galaxies
Using a simple model of molecular cloud evolution, we have quantitatively
estimated the change of star formation rate (SFR) of a disk galaxy falling
radially into the potential well of a cluster of galaxies. The SFR is affected
by the ram-pressure from the intracluster medium (ICM). As the galaxy
approaches the cluster center, the SFR increases to twice the initial value, at
most, in a cluster with high gas density and deep potential well, or with a
central pressure of because the ram-pressure
compresses the molecular gas of the galaxy. However, this increase does not
affect the color of the galaxy significantly. Further into the central region
of the cluster ( Mpc from the center), the SFR of the disk
component drops rapidly due to the effect of ram-pressure stripping. This makes
the color of the galaxy redder and makes the disk dark. These effects may
explain the observed color, morphology distribution and evolution of galaxies
in high-redshift clusters. By contrast, in a cluster with low gas density and
shallow potential well, or the central pressure of ,
the SFR of a radially infalling galaxy changes less significantly, because
neither ram-pressure compression nor stripping is effective. Therefore, the
color of galaxies in poor clusters is as blue as that of field galaxies, if
other environmental effects such as galaxy-galaxy interaction are not
effective. The predictions of the model are compared with observations.Comment: 19 pages, 9 figures, to appear in Ap
The Amino Terminus of the Yeast F_1-ATPase β-Subunit Precursor Functions as a Mitochondrial Import Signal
The ATP2 gene of Saccharomyces cerevisiae codes for the cytoplasmically synthesized beta-subunit protein of the mitochondrial F1-ATPase. To define the amino acid sequence determinants necessary for the in vivo targeting and import of this protein into mitochondria, we have constructed gene fusions between the ATP2 gene and either the Escherichia coli lacZ gene or the S. cerevisiae SUC2 gene (which codes for invertase). The ATP2-lacZ and ATP2-SUC2 gene fusions code for hybrid proteins that are efficiently targeted to yeast mitochondria in vivo. The mitochondrially associated hybrid proteins fractionate with the inner mitochondrial membrane and are resistant to proteinase digestion in the isolated organelle. Results obtained with the gene fusions and with targeting-defective ATP2 deletion mutants provide evidence that the amino-terminal 27 amino acids of the beta-subunit protein precursor are sufficient to direct both specific sorting of this protein to yeast mitochondria and its import into the organelle. Also, we have observed that certain of the mitochondrially associated Atp2-LacZ and Atp2-Suc2 hybrid proteins confer a novel respiration-defective phenotype to yeast cells
Location of the Multicritical Point for the Ising Spin Glass on the Triangular and Hexagonal Lattices
A conjecture is given for the exact location of the multicritical point in
the phase diagram of the +/- J Ising model on the triangular lattice. The
result p_c=0.8358058 agrees well with a recent numerical estimate. From this
value, it is possible to derive a comparable conjecture for the exact location
of the multicritical point for the hexagonal lattice, p_c=0.9327041, again in
excellent agreement with a numerical study. The method is a variant of duality
transformation to relate the triangular lattice directly with its dual
triangular lattice without recourse to the hexagonal lattice, in conjunction
with the replica method.Comment: 9 pages, 1 figure; Minor corrections in notatio
Statistical mechanical analysis of the linear vector channel in digital communication
A statistical mechanical framework to analyze linear vector channel models in
digital wireless communication is proposed for a large system. The framework is
a generalization of that proposed for code-division multiple-access systems in
Europhys. Lett. 76 (2006) 1193 and enables the analysis of the system in which
the elements of the channel transfer matrix are statistically correlated with
each other. The significance of the proposed scheme is demonstrated by
assessing the performance of an existing model of multi-input multi-output
communication systems.Comment: 15 pages, 2 figure
Ultra High Energy Cosmic Rays: Anisotropies and Spectrum
The recent results of the Pierre Auger Observatory on the possible
correlation of Ultra High Energy Cosmic Rays events and several nearby discrete
sources could be the starting point of a new era with charged particles
astronomy. In this paper we introduce a simple model to determine the effects
of any local distribution of sources on the expected flux. We consider two
populations of sources: faraway sources uniformly distributed and local point
sources. We study the effects on the expected flux of the local distribution of
sources, referring also to the set of astrophysical objects whose correlation
with the Auger events is experimentally claimed.Comment: 17 pages, 13 eps figures, version accepted for publication in
Astroparticle Physic
Retired A Stars: The Effect of Stellar Evolution on the Mass Estimates of Subgiants
Doppler surveys have shown that the occurrence rate of Jupiter-mass planets
appears to increase as a function of stellar mass. However, this result depends
on the ability to accurately measure the masses of evolved stars. Recently,
Lloyd (2011) called into question the masses of subgiant stars targeted by
Doppler surveys. Lloyd argues that very few observable subgiants have masses
greater than 1.5 Msun, and that most of them have masses in the range 1.0-1.2
Msun. To investigate this claim, we use Galactic stellar population models to
generate an all-sky distribution of stars. We incorporate the effects that make
massive subgiants less numerous, such as the initial mass function and
differences in stellar evolution timescales. We find that these effects lead to
negligibly small systematic errors in stellar mass estimates, in contrast to
the roughly 50% errors predicted by Lloyd. Additionally, our simulated target
sample does in fact include a significant fraction of stars with masses greater
than 1.5 Msun, primarily because the inclusion of an apparent magnitude limit
results in a Malmquist-like bias toward more massive stars, in contrast to the
volume-limited simulations of Lloyd. The magnitude limit shifts the mean of our
simulated distribution toward higher masses and results in a relatively smaller
number of evolved stars with masses in the range 1.0-1.2 Msun. We conclude
that, within the context of our present-day understanding of stellar structure
and evolution, many of the subgiants observed in Doppler surveys are indeed as
massive as main-sequence A stars.Comment: Accepted to ApJ, 5 pages, 3 figures; changed title, reworded
introduction and conclusion
Detection of Gravitational Redshift on the Solar Disk by Using Iodine-Cell Technique
With an aim to examine whether the predicted solar gravitational redshift can
be observationally confirmed under the influence of the convective Doppler
shift due to granular motions, we attempted measuring the absolute spectral
line-shifts on a large number of points over the solar disk based on an
extensive set of 5188-5212A region spectra taken through an iodine-cell with
the Solar Domeless Telescope at Hida Observatory. The resulting heliocentric
line shifts at the meridian line (where no rotational shift exists), which were
derived by finding the best-fit parameterized model spectrum with the observed
spectrum and corrected for the earth's motion, turned out to be weakly
position-dependent as ~ +400 m/s near the disk center and increasing toward the
limb up to ~ +600 m/s (both with a standard deviation of sigma ~ 100 m/s).
Interestingly, this trend tends to disappear when the convectiveshift due to
granular motions (~-300 m/s at the disk center and increasing toward the limb;
simulated based on the two-component model along with the empirical
center-to-limb variation) is subtracted, finally resulting in the averaged
shift of 698 m/s (sigma = 113 m/s). Considering the ambiguities involved in the
absolute wavelength calibration or in the correction due to convective Doppler
shifts (at least several tens m/s, or more likely up to <~100 m/s), we may
regard that this value is well consistent with the expected gravitational
redshift of 633 m/s.Comment: 28 pages, 12 figures, electronic materials as ancillary data (table3,
table 4, ReadMe); accepted for publication in Solar Physic
Heavy fermion fluid in high magnetic fields: an infrared study of CeRuSb
We report a comprehensive infrared magneto-spectroscopy study of
CeRuSb compound revealing quasiparticles with heavy effective mass
m, with a detailed analysis of optical constants in fields up to 17 T. We
find that the applied magnetic field strongly affects the low energy
excitations in the system. In particular, the magnitude of m 70
m (m is the quasiparticle band mass) at 10 K is suppressed by as much
as 25 % at 17 T. This effect is in quantitative agreement with the mean-field
solution of the periodic Anderson model augmented with a Zeeman term
- …