18,768 research outputs found
Non-equilibrium Entanglement and Noise in Coupled Qubits
We study charge entanglement in two Coulomb-coupled double quantum dots in
thermal equilibrium and under stationary non-equilibrium transport conditions.
In the transport regime, the entanglement exhibits a clear switching threshold
and various limits due to suppression of tunneling by Quantum Zeno localisation
or by an interaction induced energy gap. We also calculate quantum noise
spectra and discuss the inter-dot current correlation as an indicator of the
entanglement in transport experiments.Comment: 4 pages, 4 figure
The detailed chemical composition of the terrestrial planet host Kepler-10
Chemical abundance studies of the Sun and solar twins have demonstrated that
the solar composition of refractory elements is depleted when compared to
volatile elements, which could be due to the formation of terrestrial planets.
In order to further examine this scenario, we conducted a line-by-line
differential chemical abundance analysis of the terrestrial planet host
Kepler-10 and fourteen of its stellar twins. Stellar parameters and elemental
abundances of Kepler-10 and its stellar twins were obtained with very high
precision using a strictly differential analysis of high quality CFHT, HET and
Magellan spectra. When compared to the majority of thick disc twins, Kepler-10
shows a depletion in the refractory elements relative to the volatile elements,
which could be due to the formation of terrestrial planets in the Kepler-10
system. The average abundance pattern corresponds to ~ 13 Earth masses, while
the two known planets in Kepler-10 system have a combined ~ 20 Earth masses.
For two of the eight thick disc twins, however, no depletion patterns are
found. Although our results demonstrate that several factors (e.g., planet
signature, stellar age, stellar birth location and Galactic chemical evolution)
could lead to or affect abundance trends with condensation temperature, we find
that the trends give further support for the planetary signature hypothesis.Comment: 12 pages, 11 figures, accepted for publication in MNRA
Evidence for a Physically Compact Narrow-Line Region in the Seyfert 1 Galaxy NGC 5548
We have combined HST/FOS and ground-based spectra of the Seyfert 1 galaxy NGC
5548 to study the narrow emission lines over the 1200 -- 10,000 angstrom
region. All of the spectra were obtained when the broad emission line and
continuum fluxes were at an historic low level, allowing us to accurately
determine the contribution of the narrow-line region (NLR) to the emission
lines. We have generated multicomponent photoionization models to investigate
the relative strength of the high ionization lines compared to those in Seyfert
2 galaxies, and the weakness of the narrow Mg II 2800 line. We present evidence
for a high ionization component of NLR gas that is very close to the nucleus
(~1 pc). This component must be optically thin to ionizing radiation at the
Lyman edge (tau = 2.5) to avoid producing [O I] and Mg II in a partially
ionized zone. The very high ionization lines (N V, [Ne V], [Fe VII], [Fe X])
are stronger than the predictions of our standard model, and we show that this
may be due to supersolar abundances and/or a ``blue bump'' in the extreme
ultraviolet (although recent observations do not support the latter). An outer
component of NLR gas (at only ~70 pc from the continuum source) is needed to
produce the low ionization lines. We show that the outer component may contain
dust, which further reduces the Mg II flux by depletion and by absorption of
the resonance photons after multiple scatterings. We show that the majority of
the emission in the NLR of NGC 5548 must arise within about ~70 pc from the
nucleus. Thus, the NLR in this Seyfert 1 galaxy is very physically compact,
compared to the typical NLR in Seyfert 2 galaxies.Comment: 38 pages, Latex, includes 2 figures (postscript), to appear in Ap
The Guppy Effect as Interference
People use conjunctions and disjunctions of concepts in ways that violate the
rules of classical logic, such as the law of compositionality. Specifically,
they overextend conjunctions of concepts, a phenomenon referred to as the Guppy
Effect. We build on previous efforts to develop a quantum model that explains
the Guppy Effect in terms of interference. Using a well-studied data set with
16 exemplars that exhibit the Guppy Effect, we developed a 17-dimensional
complex Hilbert space H that models the data and demonstrates the relationship
between overextension and interference. We view the interference effect as, not
a logical fallacy on the conjunction, but a signal that out of the two
constituent concepts, a new concept has emerged.Comment: 10 page
Elemental Abundances of Solar Sibling Candidates
Dynamical information along with survey data on metallicity and in some cases
age have been used recently by some authors to search for candidates of stars
that were born in the cluster where the Sun formed. We have acquired high
resolution, high signal-to-noise ratio spectra for 30 of these objects to
determine, using detailed elemental abundance analysis, if they could be true
solar siblings. Only two of the candidates are found to have solar chemical
composition. Updated modeling of the stars' past orbits in a realistic Galactic
potential reveals that one of them, HD162826, satisfies both chemical and
dynamical conditions for being a sibling of the Sun. Measurements of
rare-element abundances for this star further confirm its solar composition,
with the only possible exception of Sm. Analysis of long-term high-precision
radial velocity data rules out the presence of hot Jupiters and confirms that
this star is not in a binary system. We find that chemical tagging does not
necessarily benefit from studying as many elements as possible, but instead
from identifying and carefully measuring the abundances of those elements which
show large star-to-star scatter at a given metallicity. Future searches
employing data products from ongoing massive astrometric and spectroscopic
surveys can be optimized by acknowledging this fact.Comment: ApJ, in press. Tables 2 and 4 are available in full in the "Other
formats: source" downloa
Oxygen Abundances in Two Metal-Poor Subgiants from the Analysis of the 6300 A Forbidden O I Line
Recent LTE analyses (Israelian et al. 1998 and Bosegaard et al. 1999) of the
OH bands in the optical-ultraviolet spectra of nearby metal-poor subdwarfs
indicate that oxygen abundances are generally higher than those previously
determined. The difference increases with decreasing metallicity and reaches
delta([O/Fe]) ~ +0.6 dex as [Fe/H] approaches -3.0.
Employing high resolution (R = 50000), high S/N (~ 250) echelle spectra of
the two stars found by Israelian et al. (1998) to have the highest
[O/Fe]-ratios, viz, BD +23 3130 and BD +37 1458, we conducted abundance
analyses based on about 60 Fe I and 7-9 Fe II lines. We determined from Kurucz
LTE models the values of the stellar parameters, as well as abundances of Na,
Ni, and the traditional alpha-elements, independent of the calibration of color
vs scales. We determined oxygen abundances from spectral synthesis of
the stronger line (6300 A) of the [O I] doublet.
The syntheses of the [O I] line lead to smaller values of [O/Fe], consistent
with those found earlier among halo field and globular cluster giants. We
obtain [O/Fe] = +0.35 +/- 0.2 for BD +23 3130 and +0.50 +/- 0.2 for BD +37
1458. In the former, the [O I] line is very weak (~ 1 mA), so that the quoted
[O/Fe] value may in reality be an upper limit.
Therefore in these two stars a discrepancy exists between the [O/Fe]- ratios
derived from [O I] and the OH feature, and the origin of this difference
remains unclear. Until the matter is clarified, we suggest it is premature to
conclude that the ab initio oxygen abundances of old, metal-poor stars need to
be revised drastically upward.Comment: 38 pages, 5 tables, 14 figures To appear in July 1999 AJ Updated
April 16, 1999. Fixed typo
The rapid evolution of the born-again giant Sakurai’s object
The extraordinarily rapid evolution of the born-again giant Sakurai’s object following discovery in 1996 has been investigated. The evolution can be traced both in a continued cooling of the stellar surface and dramatic changes in chemical composition on a timescale of a mere few months. The abundance alterations are the results of the mixing and nuclear reactions which have ensued due to the final He-shell flash which occurred during the descent along the white dwarf cooling track. The observed changes in the H and Li abundances can be explained by ingestion and burning of the H-rich envelope and Li-production through the Cameron-Fowler mechanism. The rapidly increasing abundances of the light s-elements (including Sc) are consistent with current s-processing by neutrons released from the concomitantly produced 13C. However, the possibility that the s-elements have previously been synthesized during the AGB-phase and only mixed to the surface in connection with the final He-shell flash in the pre-white dwarf cannot be convincingly ruled out either. Since Sakurai’s object shows substantial abundance similarities with the R CrB stars and has recently undergone R CrB-like visual fading events, the “birth” of an R CrB star may have been witnessed for the first time ever. Sakurai’s object thus lends strong support for the suggestion that at least some of the R CrB stars have been formed through a final He-shell flash in a post-AGB star
Tuning the electron energy by controlling the density perturbation position in laser plasma accelerators
A density perturbation produced in an underdense plasma was used to improve
the quality of electron bunches produced in the laser-plasma wakefield
acceleration scheme. Quasi-monoenergetic electrons were generated by controlled
injection in the longitudinal density gradients of the density perturbation. By
tuning the position of the density perturbation along the laser propagation
axis, a fine control of the electron energy from a mean value of 60 MeV to 120
MeV has been demonstrated with a relative energy-spread of 15 +/- 3.6%,
divergence of 4 +/- 0.8 mrad and charge of 6 +/- 1.8 pC.Comment: 7 pages, 8 figure
Tonic inhibition of accumbal spiny neurons by extrasynaptic 4 GABAA receptors modulates the actions of psychostimulants
Within the nucleus accumbens (NAc), synaptic GABAA receptors (GABAARs) mediate phasic inhibition of medium spiny neurons (MSNs) and influence behavioral responses to cocaine. We demonstrate that both dopamine D1- and D2-receptor-expressing MSNs (D-MSNs) additionally harbor extrasynaptic GABAARs incorporating α4, β, and δ subunits that mediate tonic inhibition, thereby influencing neuronal excitability. Both the selective δ-GABAAR agonist THIP and DS2, a selective positive allosteric modulator, greatly increased the tonic current of all MSNs from wild-type (WT), but not from δ−/− or α4−/− mice. Coupling dopamine and tonic inhibition, the acute activation of D1 receptors (by a selective agonist or indirectly by amphetamine) greatly enhanced tonic inhibition in D1-MSNs but not D2-MSNs. In contrast, prolonged D2 receptor activation modestly reduced the tonic conductance of D2-MSNs. Behaviorally, WT and constitutive α4−/− mice did not differ in their expression of cocaine-conditioned place preference (CPP). Importantly, however, mice with the α4 deletion specific to D1-expressing neurons (α4D1−/−) showed increased CPP. Furthermore, THIP administered systemically or directly into the NAc of WT, but not α4−/− or α4D1−/− mice, blocked cocaine enhancement of CPP. In comparison, α4D2−/− mice exhibited normal CPP, but no cocaine enhancement. In conclusion, dopamine modulation of GABAergic tonic inhibition of D1- and D2-MSNs provides an intrinsic mechanism to differentially affect their excitability in response to psychostimulants and thereby influence their ability to potentiate conditioned reward. Therefore, α4βδ GABAARs may represent a viable target for the development of novel therapeutics to better understand and influence addictive behaviors
- …
