1,556 research outputs found

    Isolated Photons in Deep Inelastic Scattering

    Full text link
    Photon radiation at large transverse momenta at colliders is a detailed probe of hard interaction dynamics. The isolated photon production cross section in deep inelastic scattering was measured recently by the ZEUS experiment, and found to be considerably larger than theoretical predictions obtained with widely used event generators. To investigate this discrepancy, we perform a dedicated parton-level calculation of this observable, including contributions from fragmentation and large-angle radiation. Our results are in good agreement with all aspects of the experimental measurement.Comment: 4 pages, 3 figure

    Two-Loop Quark and Gluon Form Factors in Dimensional Regularisation

    Get PDF
    We compute the two-loop corrections to the massless quark form factor γ∗→qqˉ\gamma^* \to q\bar q and gluon form factor H→ggH\to gg to all orders in the dimensional regularisation parameter ϵ=(4−d)/2\epsilon=(4-d)/2. The two-loop contributions to the form factors are reduced to linear combinations of master integrals, which are computed in a closed form, expressed as Γ\Gamma-functions and generalised hypergeometric functions of unit argument. Using the newly developed HypExp-package, these can be expanded to any desired order, yielding Laurent expansions in ϵ\epsilon. We provide expansions of the form factors to order ϵ2\epsilon^2, as required for ultraviolet renormalisation and infrared factorisation of the three-loop form factors.Comment: 9 pages, latex, references update

    NNLO QCD corrections to event shape variables in electron positron annihilation

    Full text link
    Precision studies of QCD at electron-positron colliders are based on measurements of event shapes and jet rates. To match the high experimental accuracy, theoretical predictions to next-to-next-to-leading order (NNLO) in QCD are needed for a reliable interpretation of the data. We report the first calculation of NNLO corrections O(alpha_s^3) to three-jet production and related event shapes, and discuss their phenomenological impact.Comment: Contributed to 2007 Europhysics Conference on High Energy Physics, Manchester, England 19-25 July 200

    Characterisation of red-giant stars in the public Kepler data

    Full text link
    The first public release of long-cadence stellar photometric data collected by the NASA Kepler mission has now been made available. In this paper we characterise the red-giant (G-K) stars in this large sample in terms of their solar-like oscillations. We use published methods and well-known scaling relations in the analysis. Just over 70% of the red giants in the sample show detectable solar-like oscillations, and from these oscillations we are able to estimate the fundamental properties of the stars. This asteroseismic analysis reveals different populations: low-luminosity H-shell burning red-giant branch stars, cool high-luminosity red giants on the red-giant branch and He-core burning clump and secondary-clump giants.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society Main Journa

    Solar-like oscillations in red giants observed with Kepler: comparison of global oscillation parameters from different methods

    Full text link
    The large number of stars for which uninterrupted high-precision photometric timeseries data are being collected with \textit{Kepler} and CoRoT initiated the development of automated methods to analyse the stochastically excited oscillations in main-sequence, subgiant and red-giant stars. Aims: We investigate the differences in results for global oscillation parameters of G and K red-giant stars due to different methods and definitions. We also investigate uncertainties originating from the stochastic nature of the oscillations. Methods: For this investigation we use Kepler data obtained during the first four months of operation. These data have been analysed by different groups using already published methods and the results are compared. We also performed simulations to investigate the uncertainty on the resulting parameters due to different realizations of the stochastic signal. Results: We obtain results for the frequency of maximum oscillation power (nu_max) and the mean large separation () from different methods for over one thousand red-giant stars. The results for these parameters agree within a few percent and seem therefore robust to the different analysis methods and definitions used here. The uncertainties for nu_max and due to differences in realization noise are not negligible and should be taken into account when using these results for stellar modelling.Comment: 11 pages, 9 Figures and 7 tables, accepted for publication in Astronomy and Astrophysic
    • …
    corecore