61 research outputs found

    Low Energy Light Yield of Fast Plastic Scintillators

    Full text link
    Compact neutron imagers using double-scatter kinematic reconstruction are being designed for localization and characterization of special nuclear material. These neutron imaging systems rely on scintillators with a rapid prompt temporal response as the detection medium. As n-p elastic scattering is the primary mechanism for light generation by fast neutron interactions in organic scintillators, proton light yield data are needed for accurate assessment of scintillator performance. The proton light yield of a series of commercial fast plastic organic scintillators---EJ-200, EJ-204, and EJ-208---was measured via a double time-of-flight technique at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. Using a tunable deuteron breakup neutron source, target scintillators housed in a dual photomultiplier tube configuration, and an array of pulse-shape-discriminating observation scintillators, the fast plastic scintillator light yield was measured over a broad and continuous energy range down to proton recoil energies of approximately 50 keV. This work provides key input to event reconstruction algorithms required for utilization of these materials in emerging neutron imaging modalities.Comment: 15 pages, 6 figure

    What Is the Role of Astrocyte Calcium in Neurophysiology?

    Get PDF
    Astrocytes comprise approximately half of the volume of the adult mammalian brain and are the primary neuronal structural and trophic supportive elements. Astrocytes are organized into distinct nonoverlapping domains and extend elaborate and dense fine processes that interact intimately with synapses and cerebrovasculature. The recognition in the mid 1990s that astrocytes undergo elevations in intracellular calcium concentration following activation of G protein-coupled receptors by synaptically released neurotransmitters demonstrated not only that astrocytes display a form of excitability but also that astrocytes may be active participants in brain information processing. The roles that astrocytic calcium elevations play in neurophysiology and especially in modulation of neuronal activity have been intensely researched in recent years. This review will summarize the current understanding of the function of astrocytic calcium signaling in neurophysiological processes and discuss areas where the role of astrocytes remains controversial and will therefore benefit from further study

    Morphological and Behavioral Changes in the Pathogenesis of a Novel Mouse Model of Communicating Hydrocephalus

    Get PDF
    The Ro1 model of hydrocephalus represents an excellent model for studying the pathogenesis of hydrocephalus due to its complete penetrance and inducibility, enabling the investigation of the earliest cellular and histological changes in hydrocephalus prior to overt pathology. Hematoxylin and eosin staining, immunofluorescence and electron microscopy were used to characterize the histopathological events of hydrocephalus in this model. Additionally, a broad battery of behavioral tests was used to investigate behavioral changes in the Ro1 model of hydrocephalus. The earliest histological changes observed in this model were ventriculomegaly and disorganization of the ependymal lining of the aqueduct of Sylvius, which occurred concomitantly. Ventriculomegaly led to thinning of the ependyma, which was associated with periventricular edema and areas of the ventricular wall void of cilia and microvilli. Ependymal denudation was subsequent to severe ventriculomegaly, suggesting that it is an effect, rather than a cause, of hydrocephalus in the Ro1 model. Additionally, there was no closure of the aqueduct of Sylvius or any blockages within the ventricular system, even with severe ventriculomegaly, suggesting that the Ro1 model represents a model of communicating hydrocephalus. Interestingly, even with severe ventriculomegaly, there were no behavioral changes, suggesting that the brain is able to compensate for the structural changes that occur in the pathogenesis of hydrocephalus if the disorder progresses at a sufficiently slow rate

    Mineral Composition is Altered by Osteoblast Expression of an Engineered Gs-Coupled Receptor

    Get PDF
    Activation of the Gs G protein–coupled receptor Rs1 in osteoblasts increases bone mineral density by 5- to 15-fold in mice and recapitulates histologic aspects of fibrous dysplasia of the bone. However, the effects of constitutive Gs signaling on bone tissue quality are not known. The goal of this study was to determine bone tissue quality in mice resulting from osteoblast-specific constitutive Gs activation, by the complementary techniques of FTIR spectroscopy and synchrotron radiation micro-computed tomography (SRμCT). Col1(2.3)-tTA/TetO-Rs1 double transgenic (DT) mice, which showed osteoblast-specific constitutive Gs signaling activity by the Rs1 receptor, were created. Femora and calvariae of DT and wild-type (WT) mice (6 and 15 weeks old) were analyzed by FTIR spectroscopy. WT and DT femora (3 and 9 weeks old) were imaged by SRμCT. Mineral-to-matrix ratio was 25% lower (P = 0.010), carbonate-to-phosphate ratio was 20% higher (P = 0.025), crystallinity was 4% lower (P = 0.004), and cross-link ratio was 11% lower (P = 0.025) in 6-week DT bone. Differences persisted in 15-week animals. Quantitative SRμCT analysis revealed substantial differences in mean values and heterogeneity of tissue mineral density (TMD). TMD values were 1,156 ± 100 and 711 ± 251 mg/cm3 (mean ± SD) in WT and DT femoral diaphyses, respectively, at 3 weeks. Similar differences were found in 9-week animals. These results demonstrate that continuous Gs activation in murine osteoblasts leads to deposition of immature bone tissue with reduced mineralization. Our findings suggest that bone tissue quality may be an important contributor to increased fracture risk in fibrous dysplasia patients

    Modifying Ligand-Induced and Constitutive Signaling of the Human 5-HT4 Receptor

    Get PDF
    G protein–coupled receptors (GPCRs) signal through a limited number of G-protein pathways and play crucial roles in many biological processes. Studies of their in vivo functions have been hampered by the molecular and functional diversity of GPCRs and the paucity of ligands with specific signaling effects. To better compare the effects of activating different G-protein signaling pathways through ligand-induced or constitutive signaling, we developed a new series of RASSLs (receptors activated solely by synthetic ligands) that activate different G-protein signaling pathways. These RASSLs are based on the human 5-HT4b receptor, a GPCR with high constitutive Gs signaling and strong ligand-induced G-protein activation of the Gs and Gs/q pathways. The first receptor in this series, 5-HT4-D100A or Rs1 (RASSL serotonin 1), is not activated by its endogenous agonist, serotonin, but is selectively activated by the small synthetic molecules GR113808, GR125487, and RO110-0235. All agonists potently induced Gs signaling, but only a few (e.g., zacopride) also induced signaling via the Gq pathway. Zacopride-induced Gq signaling was enhanced by replacing the C-terminus of Rs1 with the C-terminus of the human 5-HT2C receptor. Additional point mutations (D66A and D66N) blocked constitutive Gs signaling and lowered ligand-induced Gq signaling. Replacing the third intracellular loop of Rs1 with that of human 5-HT1A conferred ligand-mediated Gi signaling. This Gi-coupled RASSL, Rs1.3, exhibited no measurable signaling to the Gs or Gq pathway. These findings show that the signaling repertoire of Rs1 can be expanded and controlled by receptor engineering and drug selection

    Regulated ATF5 loss-of-function in adult mice blocks formation and causes regression/eradication of gliomas

    Get PDF
    Glioblastomas are among the most incurable cancers. Our past findings indicated that glioblastoma cells, but not neurons or glia, require the transcription factor ATF5 (activating transcription factor 5) for survival. However, it was unknown whether interference with ATF5 function can prevent or promote regression/eradication of malignant gliomas in vivo. To address this issue, we created a mouse model by crossing a human glial fibrillary acidic protein (GFAP) promoter-tetracycline transactivator mouse line with tetracycline operon-dominant negative-ATF5 (d/n-ATF5) mice to establish bi-transgenic mice. In this model, d/n-ATF5 expression is controlled by doxycycline and the promoter for GFAP, a marker for stem/progenitor cells as well as gliomas. Endogenous gliomas were produced with high efficiency by retroviral delivery of platelet-derived growth factor (PDGF)-B and p53-short hairpin RNA (shRNA) in adult bi-transgenic mice in which expression of d/n-ATF5 was spatially and temporally regulated. Induction of d/n-ATF5 before delivery of PDGF-B/p53-shRNA virus greatly reduced the proportion of mice that formed tumors. Moreover, d/n-ATF5 induction after tumor formation led to regression/eradication of detectable gliomas without evident damage to normal brain cells in all 24 mice assessed

    Measurement of Λ4H\rm ^4_{\Lambda}H and Λ4He\rm ^4_{\Lambda}He binding energy in Au+Au collisions at sNN\sqrt{s_\mathrm{NN}} = 3 GeV

    Full text link
    Measurements of mass and Λ\Lambda binding energy of Λ4H\rm ^4_{\Lambda}H and Λ4He\rm ^4_{\Lambda}He in Au+Au collisions at sNN=3\sqrt{s_{_{\rm NN}}}=3 GeV are presented, with an aim to address the charge symmetry breaking (CSB) problem in hypernuclei systems with atomic number A = 4. The Λ\Lambda binding energies are measured to be 2.22±0.06(stat.)±0.14(syst.)\rm 2.22\pm0.06(stat.) \pm0.14(syst.) MeV and 2.38±0.13(stat.)±0.12(syst.)\rm 2.38\pm0.13(stat.) \pm0.12(syst.) MeV for Λ4H\rm ^4_{\Lambda}H and Λ4He\rm ^4_{\Lambda}He, respectively. The measured Λ\Lambda binding-energy difference is 0.16±0.14(stat.)±0.10(syst.)\rm 0.16\pm0.14(stat.)\pm0.10(syst.) MeV for ground states. Combined with the γ\gamma-ray transition energies, the binding-energy difference for excited states is 0.16±0.14(stat.)±0.10(syst.)\rm -0.16\pm0.14(stat.)\pm0.10(syst.) MeV, which is negative and comparable to the value of the ground states within uncertainties. These new measurements on the Λ\Lambda binding-energy difference in A = 4 hypernuclei systems are consistent with the theoretical calculations that result in ΔBΛ4(1exc+)ΔBΛ4(0g.s.+)<0\rm \Delta B_{\Lambda}^4(1_{exc}^{+})\approx -\Delta B_{\Lambda}^4(0_{g.s.}^{+})<0 and present a new method for the study of CSB effect using relativistic heavy-ion collisions.Comment: 8 pages, 5 figure

    Hyperon polarization along the beam direction relative to the second and third harmonic event planes in isobar collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Full text link
    The polarization of Λ\Lambda and Λˉ\bar{\Lambda} hyperons along the beam direction has been measured relative to the second and third harmonic event planes in isobar Ru+Ru and Zr+Zr collisions at sNN\sqrt{s_{NN}} = 200 GeV. This is the first experimental evidence of the hyperon polarization by the triangular flow originating from the initial density fluctuations. The amplitudes of the sine modulation for the second and third harmonic results are comparable in magnitude, increase from central to peripheral collisions, and show a mild pTp_T dependence. The azimuthal angle dependence of the polarization follows the vorticity pattern expected due to elliptic and triangular anisotropic flow, and qualitatively disagree with most hydrodynamic model calculations based on thermal vorticity and shear induced contributions. The model results based on one of existing implementations of the shear contribution lead to a correct azimuthal angle dependence, but predict centrality and pTp_T dependence that still disagree with experimental measurements. Thus, our results provide stringent constraints on the thermal vorticity and shear-induced contributions to hyperon polarization. Comparison to previous measurements at RHIC and the LHC for the second-order harmonic results shows little dependence on the collision system size and collision energy.Comment: 6 pages, 5 figures, Published in Physical Review Letter

    Tomography of Ultra-relativistic Nuclei with Polarized Photon-gluon Collisions

    Full text link
    A linearly polarized photon can be quantized from the Lorentz-boosted electromagnetic field of a nucleus traveling at ultra-relativistic speed. When two relativistic heavy nuclei pass one another at a distance of a few nuclear radii, the photon from one nucleus may interact through a virtual quark-antiquark pair with gluons from the other nucleus forming a short-lived vector meson (e.g. ρ0{\rho^0}). In this experiment, the polarization was utilized in diffractive photoproduction to observe a unique spin interference pattern in the angular distribution of ρ0π+π{\rho^0\rightarrow\pi^+\pi^-} decays. The observed interference is a result of an overlap of two wave functions at a distance an order of magnitude larger than the ρ0{\rho^0} travel distance within its lifetime. The strong-interaction nuclear radii were extracted from these diffractive interactions, and found to be 6.53±0.066.53\pm 0.06 fm (197Au^{197} {\rm Au }) and 7.29±0.087.29\pm 0.08 fm (238U^{238} {\rm U}), larger than the nuclear charge radii. The observable is demonstrated to be sensitive to the nuclear geometry and quantum interference of non-identical particles
    corecore