1,643 research outputs found

    Fabrication and transport critical currents of multifilamentary MgB2/Fe wires and tapes

    Full text link
    Multifilamentary MgB2/Fe wires and tapes with high transport critical current densities have been fabricated using a straightforward powder-in-tube (PIT) process. After annealing, we measured transport jc values up to 1.1 * 105 A/cm2 at 4.2 K and in a field of 2 T in a MgB2/Fe square wire with 7 filaments fabricated by two-axial rolling, and up to 5 * 104 A/cm2 at 4.2 K in 1 T in a MgB2/Fe tape with 7 filaments. For higher currents these multifilamentary wires and tapes quenched due to insufficient thermal stability of filaments. Both the processing routes and deformation methods were found to be important factors for fabricating multifilamentary MgB2 wires and tapes with high transport jc values.Comment: 13 pages, 7 figure

    Transport Properties and Exponential n-values of Fe/MgB2 Tapes With Various MgB2 Particle Sizes

    Full text link
    Fe/MgB2 tapes have been prepared starting with pre-reacted binary MgB2 powders. As shown by resistive and inductive measurements, the reduction of particle size to a few microns by ball milling has little influence on Bc2, while the superconducting properties of the individual MgB2 grains are essentially unchanged. Reducing the particle size causes an enhancement of Birr from 14 to 16 T, while Jc has considerably increased at high fields, its slope Jc(B) being reduced. At 4.2K, values of 5.3*10^4 and 1.2*10^3 A/cm^2 were measured at 3.5 and 10 T, respectively, suggesting a dominant role of the conditions at the grain interfaces. A systematic variation of these conditions at the interfaces is undertaken in order to determine the limit of transport properties for Fe/MgB2 tapes. The addition of 5% Mg to MgB2 powder was found to affect neither Jc nor Bc2. For the tapes with the highest Jc values, very high exponential n factors were measured: n = 148, 89 and 17 at 3.5, 5 and 10T, respectively and measurements of critical current versus applied strain have been performed. The mechanism leading to high transport critical current densities of filamentary Fe/MgB2 tapes based on MgB2 particles is discussed.Comment: Presented at ICMC 2003, 25-28 May 200

    Multi-task Image Classification via Collaborative, Hierarchical Spike-and-Slab Priors

    Full text link
    Promising results have been achieved in image classification problems by exploiting the discriminative power of sparse representations for classification (SRC). Recently, it has been shown that the use of \emph{class-specific} spike-and-slab priors in conjunction with the class-specific dictionaries from SRC is particularly effective in low training scenarios. As a logical extension, we build on this framework for multitask scenarios, wherein multiple representations of the same physical phenomena are available. We experimentally demonstrate the benefits of mining joint information from different camera views for multi-view face recognition.Comment: Accepted to International Conference in Image Processing (ICIP) 201

    Dipole: Diagnosis Prediction in Healthcare via Attention-based Bidirectional Recurrent Neural Networks

    Full text link
    Predicting the future health information of patients from the historical Electronic Health Records (EHR) is a core research task in the development of personalized healthcare. Patient EHR data consist of sequences of visits over time, where each visit contains multiple medical codes, including diagnosis, medication, and procedure codes. The most important challenges for this task are to model the temporality and high dimensionality of sequential EHR data and to interpret the prediction results. Existing work solves this problem by employing recurrent neural networks (RNNs) to model EHR data and utilizing simple attention mechanism to interpret the results. However, RNN-based approaches suffer from the problem that the performance of RNNs drops when the length of sequences is large, and the relationships between subsequent visits are ignored by current RNN-based approaches. To address these issues, we propose {\sf Dipole}, an end-to-end, simple and robust model for predicting patients' future health information. Dipole employs bidirectional recurrent neural networks to remember all the information of both the past visits and the future visits, and it introduces three attention mechanisms to measure the relationships of different visits for the prediction. With the attention mechanisms, Dipole can interpret the prediction results effectively. Dipole also allows us to interpret the learned medical code representations which are confirmed positively by medical experts. Experimental results on two real world EHR datasets show that the proposed Dipole can significantly improve the prediction accuracy compared with the state-of-the-art diagnosis prediction approaches and provide clinically meaningful interpretation

    The U(1)A anomaly in noncommutative SU(N) theories

    Full text link
    We work out the one-loop U(1)AU(1)_A anomaly for noncommutative SU(N) gauge theories up to second order in the noncommutative parameter θμν\theta^{\mu\nu}. We set θ0i=0\theta^{0i}=0 and conclude that there is no breaking of the classical U(1)AU(1)_A symmetry of the theory coming from the contributions that are either linear or quadratic in θμν\theta^{\mu\nu}. Of course, the ordinary anomalous contributions will be still with us. We also show that the one-loop conservation of the nonsinglet currents holds at least up to second order in θμν\theta^{\mu\nu}. We adapt our results to noncommutative gauge theories with SO(N) and U(1) gauge groups.Comment: 50 pages, 5 figures in eps files. Some comments and references adde

    Direct observation of active material concentration gradients and crystallinity breakdown in LiFePO4 electrodes during charge/discharge cycling of lithium batteries

    No full text
    The phase changes that occur during discharge of an electrode comprised of LiFePO4, carbon, and PTFE binder have been studied in lithium half cells by using X-ray diffraction measurements in reflection geometry. Differences in the state of charge between the front and the back of LiFePO4 electrodes have been visualized. By modifying the X-ray incident angle the depth of penetration of the X-ray beam into the electrode was altered, allowing for the examination of any concentration gradients that were present within the electrode. At high rates of discharge the electrode side facing the current collector underwent limited lithium insertion while the electrode as a whole underwent greater than 50% of discharge. This behavior is consistent with depletion at high rate of the lithium content of the electrolyte contained in the electrode pores. Increases in the diffraction peak widths indicated a breakdown of crystallinity within the active material during cycling even during the relatively short duration of these experiments, which can also be linked to cycling at high rate
    corecore