19,316 research outputs found

    Modelling of the fast rotating delta Scuti star Altair

    Full text link
    We present an asteroseismic study of the fast rotating star HD187642 (Altair), recently discovered to be a delta Scuti pulsator. We have computed models taking into account rotation for increasing rotational velocities. We investigate the relation between the fundamental radial mode and the first overtone in the framework of Petersen diagrams. The effects of rotation on such diagrams, which become important at rotational velocities above 150 km/s, as well as the domain of validity of our seismic tools are discussed. We also investigate the radial and non-radial modes in order to constrain models fitting the five most dominant observed oscillation modes.Comment: Accepted for publication in A&A (11 pages, 6 figures, 4 tables

    A simplified treatment of SiB's land surface albedo parameterization

    Get PDF
    The earlier presented surface albedo parameterization is simplified by assuming that the reflectance of direct solar radiation is a simple function of solar zenith angle. The function chosen contains three parameters that vary with vegetation type, greenness, and leaf area index. Tables of parameter values are presented. Using these tables, SiB's (Simple Biosphere model) absorbances of direct solar radiation can be reproduced with an average relative error of less than 0.5 percent. Finally, the direct reflectance function is integrated over zenith angle to produce an equation for the surface reflectance of diffuse radiation

    Reset and switch protocols at Landauer limit in a graphene buckled ribbon

    Full text link
    Heat produced during a reset operation is meant to show a fundamental bound known as Landauer limit, while simple switch operations have an expected minimum amount of produced heat equal to zero. However, in both cases, present-day technology realizations dissipate far beyond these theoretical limits. In this paper we present a study based on molecular dynamics simulations, where reset and switch protocols are applied on a graphene buckled ribbon, employed here as a nano electromechanical switch working at the thermodynamic limit

    Ultrafast relaxation rates and reversal time in disordered ferrimagnets

    Get PDF
    In response to ultrafast laser pulses, single-phase metals have been classified as “fast” (with magnetization quenching on the time scale of the order of 100 fs and recovery in the time scale of several picoseconds and below) and “slow” (with longer characteristic time scales). Disordered ferrimagnetic alloys consisting of a combination of “fast” transition (TM) and “slow” rare-earth (RE) metals have been shown to exhibit an ultrafast all-optical switching mediated by the heat mechanism. The behavior of the characteristic time scales of coupled alloys is more complicated and is influenced by many parameters such as the intersublattice exchange, doping (RE) concentration, and the temperature. Here, the longitudinal relaxation times of each sublattice are analyzed within the Landau-Lifshitz-Bloch framework. We show that for moderate intersublattice coupling strength both materials slow down as a function of slow (RE) material concentration. For larger coupling, the fast (TM) material may become faster, while the slow (RE) one is still slower. These conclusions may have important implications in the switching time of disordered ferrimagnets such as GdFeCo with partial clustering. Using atomistic modeling, we show that in the moderately coupled case, the reversal would start in the Gd-rich region, while the situation may be reversed if the coupling strength is larger

    Soft swimming: Exploiting deformable interfaces for low-Reynolds number locomotion

    Full text link
    Reciprocal movement cannot be used for locomotion at low-Reynolds number in an infinite fluid or near a rigid surface. Here we show that this limitation is relaxed for a body performing reciprocal motions near a deformable interface. Using physical arguments and scaling relationships, we show that the nonlinearities arising from reciprocal flow-induced interfacial deformation rectify the periodic motion of the swimmer, leading to locomotion. Such a strategy can be used to move toward, away from, and parallel to any deformable interface as long as the length scales involved are smaller than intrinsic scales, which we identify. A macro-scale experiment of flapping motion near a free surface illustrates this new result
    • …
    corecore