19,316 research outputs found
Modelling of the fast rotating delta Scuti star Altair
We present an asteroseismic study of the fast rotating star HD187642
(Altair), recently discovered to be a delta Scuti pulsator. We have computed
models taking into account rotation for increasing rotational velocities. We
investigate the relation between the fundamental radial mode and the first
overtone in the framework of Petersen diagrams. The effects of rotation on such
diagrams, which become important at rotational velocities above 150 km/s, as
well as the domain of validity of our seismic tools are discussed. We also
investigate the radial and non-radial modes in order to constrain models
fitting the five most dominant observed oscillation modes.Comment: Accepted for publication in A&A (11 pages, 6 figures, 4 tables
A simplified treatment of SiB's land surface albedo parameterization
The earlier presented surface albedo parameterization is simplified by assuming that the reflectance of direct solar radiation is a simple function of solar zenith angle. The function chosen contains three parameters that vary with vegetation type, greenness, and leaf area index. Tables of parameter values are presented. Using these tables, SiB's (Simple Biosphere model) absorbances of direct solar radiation can be reproduced with an average relative error of less than 0.5 percent. Finally, the direct reflectance function is integrated over zenith angle to produce an equation for the surface reflectance of diffuse radiation
Reset and switch protocols at Landauer limit in a graphene buckled ribbon
Heat produced during a reset operation is meant to show a fundamental bound
known as Landauer limit, while simple switch operations have an expected
minimum amount of produced heat equal to zero. However, in both cases,
present-day technology realizations dissipate far beyond these theoretical
limits. In this paper we present a study based on molecular dynamics
simulations, where reset and switch protocols are applied on a graphene buckled
ribbon, employed here as a nano electromechanical switch working at the
thermodynamic limit
Ultrafast relaxation rates and reversal time in disordered ferrimagnets
In response to ultrafast laser pulses, single-phase metals have been classified as “fast” (with magnetization quenching on the time scale of the order of 100 fs and recovery in the time scale of several picoseconds and below) and “slow” (with longer characteristic time scales). Disordered ferrimagnetic alloys consisting of a combination of “fast” transition (TM) and “slow” rare-earth (RE) metals have been shown to exhibit an ultrafast all-optical switching mediated by the heat mechanism. The behavior of the characteristic time scales of coupled alloys is more complicated and is influenced by many parameters such as the intersublattice exchange, doping (RE) concentration, and the temperature. Here, the longitudinal relaxation times of each sublattice are analyzed within the Landau-Lifshitz-Bloch framework. We show that for moderate intersublattice coupling strength both materials slow down as a function of slow (RE) material concentration. For larger coupling, the fast (TM) material may become faster, while the slow (RE) one is still slower. These conclusions may have important implications in the switching time of disordered ferrimagnets such as GdFeCo with partial clustering. Using atomistic modeling, we show that in the moderately coupled case, the reversal would start in the Gd-rich region, while the situation may be reversed if the coupling strength is larger
Soft swimming: Exploiting deformable interfaces for low-Reynolds number locomotion
Reciprocal movement cannot be used for locomotion at low-Reynolds number in
an infinite fluid or near a rigid surface. Here we show that this limitation is
relaxed for a body performing reciprocal motions near a deformable interface.
Using physical arguments and scaling relationships, we show that the
nonlinearities arising from reciprocal flow-induced interfacial deformation
rectify the periodic motion of the swimmer, leading to locomotion. Such a
strategy can be used to move toward, away from, and parallel to any deformable
interface as long as the length scales involved are smaller than intrinsic
scales, which we identify. A macro-scale experiment of flapping motion near a
free surface illustrates this new result
- …