1,611 research outputs found

    Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior

    Get PDF
    Increased tonic activity of locus coeruleus noradrenergic (LC-NE) neurons induces anxiety-like and aversive behavior. While some information is known about the afferent circuitry that endogenously drives this neural activity and behavior, the downstream receptors and anatomical projections that mediate these acute risk aversive behavioral states via the LC-NE system remain unresolved. Here we use a combination of retrograde tracing, fast-scan cyclic voltammetry, electrophysiology, and in vivo optogenetics with localized pharmacology to identify neural substrates downstream of increased tonic LC-NE activity in mice. We demonstrate that photostimulation of LC-NE fibers in the BLA evokes norepinephrine release in the basolateral amygdala (BLA), alters BLA neuronal activity, conditions aversion, and increases anxiety-like behavior. Additionally, we report that β-adrenergic receptors mediate the anxiety-like phenotype of increased NE release in the BLA. These studies begin to illustrate how the complex efferent system of the LC-NE system selectively mediates behavior through distinct receptor and projection-selective mechanisms

    Molecular Marker-Facilitated Investigations of Quantitative Trait Loci in Maize. II. Factors Influencing Yield and Its Component Traits

    Get PDF
    Because traits such as grain yield are polygenically inherited and strongly influenced by environment, determination of genotypic values from phenotypic expression is not precise and improvement strategies are frequently based on low heritabilities. Increased knowledge of the genetic factors involved in the expression of yield should enhance the improvement of this trait. The objectives of this study were to identify and locate genetic factors (i.e., quantitative trait loci, QTL\u27s) associated with grain yield and 24 yield-related traits in two F2populations of maize (Zea mays L.) using isozyme marker loci. (The populations were generated by selfing the F1, hybrids CO159 ✕ Tx303 and T232 ✕ CM37.) In addition, assessments of the types and magnitudes of gene effects expressed by these QTL\u27s were made. About two-thirds of the associations among 17 to 20 marker loci and the 25 quantitative traits were significant with a large proportion of these at P \u3c 0.001. Proportions of variation accounted for by genetic factors associated with individual marker loci varied from less than 1% to more than 11%. Although individual marker loci accounted for relatively small proportions of the phenotypic variation for these yield-related traits, differences between mean phenotypic values of the two homozygous classes at certain loci were occasionally more than 16% of the population mean. Also, different genomic regions contributed to yield through different subsets of the yield-related traits. Predominant types of gene action varied among loci and among the 25 quantitative traits. For plant grain yield, top ear grain weight, and ear length, the gene action was primarily dominant or overdominant. However, mainly additive gene action was implicated for ear number, kernel row number, and second ear grain weight. Results from these studies should prove to be useful for manipulating QTL\u27s in marker-facilitated selection program

    A broadband FFT spectrometer for radio and millimeter astronomy

    Full text link
    The core architecture, tests in the lab and first results of a Fast Fourier Transform (FFT) spectrometer are described. It is based on a commercially available fast digital sampler (AC240) with an on-board Field Programmable Gate Array (FPGA). The spectrometer works continuously and has a remarkable total bandwidth of 1 GHz, resolved into 16384 channels. The data is sampled with 8 bits, yielding a dynamic range of 48 dB. An Allan time of more than 2000 s and an SFDR of 37 dB were measured. First light observations with the KOSMA telescope show a perfect spectrum without internal or external spurious signals.Comment: Astronomy and Astrophysics, in pres

    Duplicated Chromosome Segments in Maize (Zea mays L.): Further Evidence from Hexokinase Isozymes

    Get PDF
    The genetic control of hexokinase isozymes (ATP: d-hexose-6-phosphotransferase, E.C. 2.7.7.1, HEX) in maize (Zea mays L.) was studied by starch gel electrophoresis. Genetic analysis of a large number of inbred lines and crosses indicates that the major isozymes observed are encoded by two nuclear loci, designated Hexl and Hex2. Five active allozymes and one null variant are associated with Hexl, while Hex2 has nine active alleles in addition to a null variant. Alleles at both loci govern the presence of single bands, with no intragenic or intergenic heteromers visible, suggesting that maize HEX\u27s are active as monomers. Organelle preparations demonstrate that the products of both loci are cytosolic. All alleles, including the nulls, segregate normally in crosses. Vigorous and fertile plants were synthesized that were homozygous for null alleles at both loci, suggesting that other hexosephosphorylating enzymes exist in maize that are undetected with our assay conditions. Linkage analyses and crosses with B-A translocation stocks place Hexl on the short arm of chromosome 3, 27 centimorgans from Pgd2 (phosphogluconate dehydrogenase) and Hex2 on the long arm of chromosome 6, approximately 45 centimorgans from Pgdl. It is suggested that the parallel linkages among these two pairs of duplicated genes reflects an evolutionary history involving chromosome segment duplication or polyploidy

    Design and Commissioning of the ISAC Control System at TRIUMF

    Get PDF
    The control system for the initial stage of the ISAC radioactive beam facility at TRIUMF was recently commissioned and the facility delivered the first radioactive beam to users in December of 1998. The control system is based on the EPICS toolkit. VME based Motorola MVME162 CPUs serve as input/output Controllers, SUN workstations as application servers, and PCs are used with X-terminal software as operator interface stations. Modicon PLCs control the vacuum system and ion sources. A network of CAN-bus based controllers is used for the beam guidance system. Custom VME modules were developed for beam diagnostics. 1 ISAC ISAC, an Online Isotope Separator and ACcelerator, is being built at TRIUMF and provided the first beams of short-lived radioactive isotopes to experiments in December of 1998. At present, ISAC is the world’s most intense source of low energy radioactive beams. By the end of next year it will also deliver the world’s most energetic radioactive beams (1.5 MeV/u). A 500 MeV proton beam of up to 10 µA from the TRIUMF cyclotron produces short-lived radioactive species in a hot (2000 °C) production target. They are extracted and accelerated to 60 keV in a target-ion-source and pass through a magnetic pre-separator before being isotopically separated in a high-resolution mass separator. This radioactive beam can either feed the low-energy experimental area or be further accelerated in a 19-ring radio-frequency quadrupole (RFQ) followed by a five-tank drift tube linac (DTL). For tuning purposes, an off-line ion source provides non-radioactive beams

    Single centre experience of the application of self navigated 3D whole heart cardiovascular magnetic resonance for the assessment of cardiac anatomy in congenital heart disease.

    Get PDF
    BACKGROUND: For free-breathing cardiovascular magnetic resonance (CMR), the self-navigation technique recently emerged, which is expected to deliver high-quality data with a high success rate. The purpose of this study was to test the hypothesis that self-navigated 3D-CMR enables the reliable assessment of cardiovascular anatomy in patients with congenital heart disease (CHD) and to define factors that affect image quality. METHODS: CHD patients ≥2 years-old and referred for CMR for initial assessment or for a follow-up study were included to undergo a free-breathing self-navigated 3D CMR at 1.5T. Performance criteria were: correct description of cardiac segmental anatomy, overall image quality, coronary artery visibility, and reproducibility of great vessels diameter measurements. Factors associated with insufficient image quality were identified using multivariate logistic regression. RESULTS: Self-navigated CMR was performed in 105 patients (55% male, 23 ± 12y). Correct segmental description was achieved in 93% and 96% for observer 1 and 2, respectively. Diagnostic quality was obtained in 90% of examinations, and it increased to 94% if contrast-enhanced. Left anterior descending, circumflex, and right coronary arteries were visualized in 93%, 87% and 98%, respectively. Younger age, higher heart rate, lower ejection fraction, and lack of contrast medium were independently associated with reduced image quality. However, a similar rate of diagnostic image quality was obtained in children and adults. CONCLUSION: In patients with CHD, self-navigated free-breathing CMR provides high-resolution 3D visualization of the heart and great vessels with excellent robustness

    Three-Dimensional Self-Navigated T2 Mapping for the Detection of Acute Cellular Rejection After Orthotopic Heart Transplantation.

    Get PDF
    T2 mapping is a magnetic resonance imaging technique measuring T2 relaxation time, which increases with the myocardial tissue water content. Myocardial edema is a component of acute cellular rejection (ACR) after heart transplantation. This pilot study compares in heart transplantation recipients a novel high resolution 3-dimensional (3D) T2-mapping technique with standard 2-dimensional (2D) T2-mapping for ACR detection. Consecutive asymptomatic patients (n = 26) underwent both 3D T2 mapping and reference 2D T2 mapping magnetic resonance imaging on the day of endomyocardial biopsy (EMB). 3D T2 maps were obtained at an isotropic spatial resolution of 1.72 mm (voxel volume 5.1 mm(3)). 2D and 3D maps were matched anatomically, and maximum segmental T2 values were compared blinded to EMB results. In addition, all 3D T2 maps were rendered as 3D images and inspected for foci of T2 elevation. T2 values of segments from 2D and reformatted 3D T2 maps agreed (p > 0.5). The highest 2D segmental T2 values were 49.9 ± 4.0 ms (no ACR = 0R, n = 18), 48.9 ± 0.8 ms (mild ACR = 1R, n = 3), and 65.0 ms (moderate ACR = 2R). Rendered 3D T2 maps of cases with 1R showed foci with significantly elevated T2 signal (T2 = 58.2 ± 3.6 ms); 5 cases (28%) in the 0R group showed foci with increased T2 values (>2 SD above adjacent tissue) that were not visible on the 2D T2 maps. This pilot study in a small cohort suggests equivalency of standard segmental analysis between 3D and 2D T2-mapping. 3D T2 mapping provides a spatial resolution that permits detection of foci with elevated T2 in patients with mild ACR
    corecore