26 research outputs found
PROBABILITY DISTRIBUTION OVER THE SET OF CLASSES IN ARABIC DIALECT CLASSIFICATION TASK
Subject of Research.We propose an approach for solving machine learning classification problem that uses the information about the probability distribution on the training data class label set. The algorithm is illustrated on a complex natural language processing task - classification of Arabic dialects. Method. Each object in the training set is associated with a probability distribution over the class label set instead of a particular class label. The proposed approach solves the classification problem taking into account the probability distribution over the class label set to improve the quality of the built classifier. Main Results. The suggested approach is illustrated on the automatic Arabic dialects classification example. Mined from the Twitter social network, the analyzed data contain word-marks and belong to the following six Arabic dialects: Saudi, Levantine, Algerian, Egyptian, Iraq, Jordan, and to the modern standard Arabic (MSA). The paper results demonstrate an increase of the quality of the built classifier achieved by taking into account probability distributions over the set of classes. Experiments carried out show that even relatively naive accounting of the probability distributions improves the precision of the classifier from 44% to 67%. Practical Relevance. Our approach and corresponding algorithm could be effectively used in situations when a manual annotation process performed by experts is connected with significant financial and time resources, but it is possible to create a system of heuristic rules. The implementation of the proposed algorithm enables to decrease significantly the data preparation expenses without substantial losses in the precision of the classification
Phase formation and relaxor properties of lead-free perovskite ceramics on the base of sodium-bismuth titanate
The work was supported by the Russian Foundation for Basic Research (Projects 16-53-48009, 17-03-00542)
Solar Concentrating Modules With Louvered Heliostats: Emerging Research and Opportunities
ΠΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΠ΅ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ Adobe AcrobatThe development of solar energy is becoming increasingly widespread all over the world. One significant way to reduce the cost of energy generated by solar modules, as well as reduce the need for centralized energy supply, is the use of non-tracking concentrator solar modules integrated into the building structure. As this area of engineering gains interest from all sectors, it is crucial to understand how to increase productivity in order to make solar modules an excellent source of energy.Solar Concentrating Modules With Louvered Heliostats: Emerging Research and Opportunities is an essential publication that formulates a scientifically based approach to the development of non-tracking solar modules with a system of linear louvered heliostats and the selection of the operating mode of the developed modules depending on various requirements of the consumer of thermal or electric energy. The proposed design can solve the problem of the lack of space for placing solar energy facilities in the city, as well asΠ Π°Π·Π²ΠΈΡΠΈΠ΅ ΡΠΎΠ»Π½Π΅ΡΠ½ΠΎΠΉ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΠΊΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅Ρ Π²ΡΠ΅ Π±ΠΎΠ»ΡΡΠ΅Π΅ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½ΠΈΠ΅ Π²ΠΎ Π²ΡΠ΅ΠΌ ΠΌΠΈΡΠ΅. ΠΠ΄Π½ΠΈΠΌ ΠΈΠ· ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΡΡΠΎΠΈΠΌΠΎΡΡΠΈ ΡΠ½Π΅ΡΠ³ΠΈΠΈ, Π²ΡΡΠ°Π±Π°ΡΡΠ²Π°Π΅ΠΌΠΎΠΉ ΡΠΎΠ»Π½Π΅ΡΠ½ΡΠΌΠΈ ΠΌΠΎΠ΄ΡΠ»ΡΠΌΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΡ ΠΏΠΎΡΡΠ΅Π±Π½ΠΎΡΡΠΈ Π² ΡΠ΅Π½ΡΡΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠΌ ΡΠ½Π΅ΡΠ³ΠΎΡΠ½Π°Π±ΠΆΠ΅Π½ΠΈΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΎΠ»Π½Π΅ΡΠ½ΡΡ
ΠΌΠΎΠ΄ΡΠ»Π΅ΠΉ-ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΎΡΠΎΠ² Π±Π΅Π· ΡΠ»Π΅ΠΆΠ΅Π½ΠΈΡ, Π²ΡΡΡΠΎΠ΅Π½Π½ΡΡ
Π² ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΡ Π·Π΄Π°Π½ΠΈΡ. ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΡΠ° ΠΎΠ±Π»Π°ΡΡΡ ΡΠ΅Ρ
Π½ΠΈΠΊΠΈ Π²ΡΠ·ΡΠ²Π°Π΅Ρ ΠΈΠ½ΡΠ΅ΡΠ΅Ρ Π²ΠΎ Π²ΡΠ΅Ρ
ΡΠ΅ΠΊΡΠΎΡΠ°Ρ
, ΠΊΡΠ°ΠΉΠ½Π΅ Π²Π°ΠΆΠ½ΠΎ ΠΏΠΎΠ½ΡΡΡ, ΠΊΠ°ΠΊ ΠΏΠΎΠ²ΡΡΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ, ΡΡΠΎΠ±Ρ ΡΠ΄Π΅Π»Π°ΡΡ ΡΠΎΠ»Π½Π΅ΡΠ½ΡΠ΅ ΠΌΠΎΠ΄ΡΠ»ΠΈ ΠΎΡΠ»ΠΈΡΠ½ΡΠΌ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠΌ ΡΠ½Π΅ΡΠ³ΠΈΠΈ. Π‘ΠΎΠ»Π½Π΅ΡΠ½ΡΠ΅ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠΈΡΡΡΡΠΈΠ΅ ΠΌΠΎΠ΄ΡΠ»ΠΈ Ρ ΠΆΠ°Π»ΡΠ·ΠΈΠΉΠ½ΡΠΌΠΈ Π³Π΅Π»ΠΈΠΎΡΡΠ°ΡΠ°ΠΌΠΈ: Π½ΠΎΠ²ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ, ΡΡΠΎ Π²Π°ΠΆΠ½Π°Ρ ΠΏΡΠ±Π»ΠΈΠΊΠ°ΡΠΈΡ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½ Π½Π°ΡΡΠ½ΠΎ- ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΡΠΉ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ ΠΊ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ΅ ΡΠΎΠ»Π½Π΅ΡΠ½ΡΡ
ΠΌΠΎΠ΄ΡΠ»Π΅ΠΉ Π±Π΅Π· ΡΠ»Π΅ΠΆΠ΅Π½ΠΈΡ Ρ ΡΠΈΡΡΠ΅ΠΌΠΎΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ
ΠΆΠ°Π»ΡΠ·ΠΈΠΉΠ½ΡΡ
Π³Π΅Π»ΠΈΠΎΡΡΠ°ΡΠΎΠ² ΠΈ Π²ΡΠ±ΠΎΡΡ ΡΠ΅ΠΆΠΈΠΌΠ° ΡΠ°Π±ΠΎΡΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΡ
ΠΌΠΎΠ΄ΡΠ»Π΅ΠΉ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Ρ ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΠΈΠ»ΠΈ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ. ΠΡΠ΅Π΄Π»Π°Π³Π°Π΅ΠΌΠ°Ρ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΡ ΠΌΠΎΠΆΠ΅Ρ ΡΠ΅ΡΠΈΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ Π½Π΅Ρ
Π²Π°ΡΠΊΠΈ ΠΌΠ΅ΡΡΠ° Π΄Π»Ρ ΡΠ°Π·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΡΠΎΠ»Π½Π΅ΡΠ½ΠΎΠΉ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΠΊΠΈ Π² Π³ΠΎ
Solar concentrating modules with louvered heliostats: emerging research and opportunities Advances in environmental engineering and green technologies (AEEGT) book series./ Dmitry Strebkov, Natalya Filippchenkova, Anatoly Irodionov.
Includes bibliographical references and index."This book explores current trends in the development of energy supply systems associated with the use of concentrated solar radiation"--Section 1. Chapter 1. The overview of basic types and characteristics of solar concentrating modules with louvered heliostats ; Chapter 2. Theoretical bases of the use of solar concentrating modules with louvered heliostats ; Chapter 3. Development of modules with different types of concentrators and receivers of solar radiation ; Chapter 4. Results of an experimental research of a solar concentrating module with louvered heliostats ; Chapter 5. Technical and economic characteristics of solar concentrating modules with louvered heliostats -- Section 2. Chapter 6. Advantages and basic areas of application of solar concentrating modules with louvered heliostats ; Chapter 7. Evaluation of the use of artificial neural networks in solar energy ; Chapter 8. Opportunities and prospects for the implementation of artificial intelligence systems in solar energy.1 online resource