3,186 research outputs found
Vestibular neuritis: Vertigo and the high-acceleration vestibulo-ocular reflex
Abstract : Patients after vestibular neuritis (VN) often report persistent dizziness and disequilibrium. We correlated persistent symptoms with sustained impairment of the high-acceleration horizontal vestibulo-ocular reflex as determined by quantitative searchcoil head-impulse testing (qHIT). In 47 patients, qHIT was recorded 0-60 months and symptoms assessed with the Yardley Vertigo Symptom Scale short form ≥ 18 months after VN onset. No correlation between the magnitude of high-acceleration vestibular impairment and the severity of vertigo symptoms was observed. The lack of a symptom-qHIT correlation suggests that defective compensation at a more rostral level in the central nervous system may be responsible for protracted symptoms in VN patient
Alexander's Law in Patients with Acute Vestibular Tone Asymmetry—Evidence for Multiple Horizontal Neural Integrators
Alexander's law (AL) states that the slow-phase velocity of spontaneous nystagmus of peripheral vestibular origin is dependent on horizontal gaze position, with greater velocity when gaze is directed in the fast-phase direction. AL is thought to be a compensatory reaction resulting from adaptive changes in the horizontal ocular motor neural integrator. Until now, only horizontal eye movements have been investigated with respect to AL. Because spontaneous nystagmus usually includes vertical and torsional components, we asked whether horizontal gaze changes would have an effect on the 3D drift of spontaneous nystagmus and, thus, on the vertical/torsional neural integrator. We hypothesized that AL reduces all nystagmus components proportionally. Moreover, we questioned the classical theory of a single bilaterally organized horizontal integrator and searched for nonlinearities of AL implying a network of multiple integrators. Using dual scleral search coils, we measured AL in 17 patients with spontaneous nystagmus. Patients followed a pulsed laser dot at eye level jumping in 5° steps along the horizontal meridian between 25° right and left in otherwise complete darkness. AL was observed in 15 of 17 patients. Whereas individual patients typically showed a change of 3D-drift direction at different horizontal eye positions, the average change in direction was not different from zero. The strength of AL (= rate of change of total velocity with gaze position) correlated with nystagmus slow-phase velocity (Spearman's rho = 0.5; p < 0.05) and, on average, did not change the 3D nystagmus drift direction. In general, eye velocity did not vary linearly with eye position. Rather, there was a stronger dependence of velocity on horizontal position when subjects looked in the slow-phase direction compared to the fast-phase direction. We conclude that the theory of a simple leak of a single horizontal neural integrator is not sufficient to explain all aspects of A
Visually guided adjustments of body posture in the roll plane
Body position relative to gravity is continuously updated to prevent falls. Therefore, the brain integrates input from the otoliths, truncal graviceptors, proprioception and vision. Without visual cues estimated direction of gravity mainly depends on otolith input and becomes more variable with increasing roll-tilt. Contrary, the discrimination threshold for object orientation shows little modulation with varying roll orientation of the visual stimulus. Providing earth-stationary visual cues, this retinal input may be sufficient to perform self-adjustment tasks successfully, with resulting variability being independent of whole-body roll orientation. We compared conditions with informative (earth-fixed) and non-informative (body-fixed) visual cues. If the brain uses exclusively retinal input (if earth-stationary) to solve the task, trial-to-trial variability will be independent from the subject's roll orientation. Alternatively, central integration of both retinal (earth-fixed) and extra-retinal inputs will lead to increasing variability when roll-tilted. Subjects, seated on a motorized chair, were instructed to (1) align themselves parallel to an earth-fixed line oriented earth-vertical or roll-tilted 75° clockwise; (2) move a body-fixed line (aligned with the body-longitudinal axis or roll-tilted 75° counter-clockwise to it) by adjusting their body position until the line was perceived earth-vertical. At 75° right-ear-down position, variability increased significantly (p<0.05) compared to upright in both paradigms, suggesting that, despite the earth-stationary retinal cues, extra-retinal input is integrated. Self-adjustments in the roll-tilted position were significantly (p<0.01) more precise for earth-fixed cues than for body-fixed cues, underlining the importance of earth-stable visual cues when estimates of gravity become more variable with increasing whole-body rol
Vestibular and auditory deficits in Fabry disease and their response to enzyme replacement therapy
Progressive hearing (pHL) and vestibular (pVL) loss are frequent deficits in Fabry disease (FD). Recently, enzyme replacement therapy (ERT) with human α-galactosidase A has become available. Here, we investigate the association between pHL and pVL in FD and their ERT responses. Pure tone audiometry (PTA) and head impulse testing (HIT) were administered at baseline in 47 patients (25 male, 18-0 y; 22 female, 17-4 y), of whom 24 also received caloric irrigation (CI). Of the 47 patients, 38 (24 male) were tested both before and during ERT (follow- up ≤60 months). ERT consisted of agalsidase alfa infusions. At baseline, pHL was present in 88% of males and 86% of females. Over all tested frequencies (range: 0.5- kHz), pHL was significantly (two-way ANOVA: p 0.05). We conclude that pHL and pVL prevalences are similar in FD. To detect pVL, HIT is more sensitive than CI. We speculate that pHL and pVL emerge from lesions within the vestibulocochlear labyrinth, because no specific patterns of vestibulo-cochlear deficits were observed, as expected if lesions were more proximal along the inferior or superior branch of the vestibulo-cochlear nerve or labyrinthine artery. Finally, ERT stabilizes auditory and even improves vestibular functio
O(4) texture with a cosmological constant
We investigate O(4) textures in a background with a positive cosmological
constant. We find static solutions which co-move with the expanding background.
There exists a solution in which the scalar field is regular at the horizon.
This solution has a noninteger winding number smaller than one. There also
exist solutions in which scalar-field derivatives are singular at the horizon.
Such solutions can complete one winding within the horizon. If the winding
number is larger than some critical value, static solutions including the
regular one are unstable under perturbations.Comment: 25 pages, revtex, 6 eps figure
On Gravitational Waves in Spacetimes with a Nonvanishing Cosmological Constant
We study the effect of a cosmological constant on the propagation
and detection of gravitational waves. To this purpose we investigate the
linearised Einstein's equations with terms up to linear order in in a
de Sitter and an anti-de Sitter background spacetime. In this framework the
cosmological term does not induce changes in the polarization states of the
waves, whereas the amplitude gets modified with terms depending on .
Moreover, if a source emits a periodic waveform, its periodicity as measured by
a distant observer gets modified. These effects are, however, extremely tiny
and thus well below the detectability by some twenty orders of magnitude within
present gravitational wave detectors such as LIGO or future planned ones such
as LISA.Comment: 8 pages, 4 figures, accepted for publication in Physical Review
Cosmological Sphaleron from Real Tunneling and Its Fate
We show that the cosmological sphaleron of Einstein-Yang-Mills system can be
produced from real tunneling geometries. The sphaleron will tend to roll down
to the vacuum or pure gauge field configuration, when the universe evolves in
the Lorentzian signature region with the sphaleron and the corresponding
hypersurface being the initial data for the Yang-Mills field and the universe,
respectively. However, we can also show that the sphaleron, although unstable,
can be regarded as a pseudo-stable solution because its lifetime is even much
greater than those of the universe.Comment: 20 pages, LaTex, article 12pt style, TIT/HEP-242/COSMO-3
Angular momentum effects in weak gravitational fields
It is shown that, contrary to what is normally expected, it is possible to
have angular momentum effects on the geometry of space time at the laboratory
scale, much bigger than the purely Newtonian effects. This is due to the fact
that the ratio between the angular momentum of a body and its mass, expressed
as a length, is easily greater than the mass itself, again expressed as a
length.Comment: LATEX, 8 page
Influence of vestibular and visual stimulation on split-belt walking
We investigated the influence of vestibular (caloric ear irrigation) and visual (optokinetic) stimulation on slow and fast split-belt walking. The velocity of one belt was fixed (1.5 or 5.0-6.0km/h) and subjects (N=8 for vestibular and N=6 for visual experiments) were asked to adjust the velocity of the other belt to a level at which they perceived the velocity of both the belts as equal. Throughout all experiments, subjects bimanually held on to the space-fixed handles along the treadmill, which provided haptic information on body orientation. While the optokinetic stimulus (displayed on face-mounted virtual reality goggles) had no effect on belt velocity adjustments compared to control trials, cold-water ear irrigation during slow (but not fast) walking effectively influenced belt velocity adjustments in seven of eight subjects. Only two of these subjects decreased the velocity of the ipsilateral belt, consistent with the ipsilateral turning toward the irrigated ear in the Fukuda stepping test. The other five subjects, however, increased the velocity of the ipsilateral belt. A straight-ahead sense mechanism can explain both decreased and increased velocity adjustments. Subjects decrease or increase ipsilateral belt velocity depending on whether the vestibular stimulus is interpreted as an indicator of the straight-ahead direction (decreased velocity) or as an error signal relative to the straight-ahead direction provided by the haptic input from the space-fixed handles along the treadmill (increased velocity). The missing effect during fast walking corroborates the findings by others that the influence of vestibular tone asymmetry on locomotion decreases at higher gait velocitie
- …
