459 research outputs found
Planar Ion Trap Geometry for Microfabrication
We describe a novel high aspect ratio radiofrequency linear ion trap geometry
that is amenable to modern microfabrication techniques. The ion trap electrode
structure consists of a pair of stacked conducting cantilevers resulting in
confining fields that take the form of fringe fields from parallel plate
capacitors. The confining potentials are modeled both analytically and
numerically. This ion trap geometry may form the basis for large scale quantum
computers or parallel quadrupole mass spectrometers.
PACS: 39.25.+k, 03.67.Lx, 07.75.+h, 07.10+CmComment: 14 pages, 16 figure
Bright Source of Cold Ions for Surface-Electrode Traps
We produce large numbers of low-energy ions by photoionization of
laser-cooled atoms inside a surface-electrode-based Paul trap. The
isotope-selective trap loading rate of Yb ions/s exceeds
that attained by photoionization (electron impact ionization) of an atomic beam
by four (six) orders of magnitude. Traps as shallow as 0.13 eV are easily
loaded with this technique. The ions are confined in the same spatial region as
the laser-cooled atoms, which will allow the experimental investigation of
interactions between cold ions and cold atoms or Bose-Einstein condensates.Comment: Paper submitted to PRL for review on 2/1/0
T-junction ion trap array for two-dimensional ion shuttling, storage and manipulation
We demonstrate a two-dimensional 11-zone ion trap array, where individual
laser-cooled atomic ions are stored, separated, shuttled, and swapped. The trap
geometry consists of two linear rf ion trap sections that are joined at a 90
degree angle to form a T-shaped structure. We shuttle a single ion around the
corners of the T-junction and swap the positions of two crystallized ions using
voltage sequences designed to accommodate the nontrivial electrical potential
near the junction. Full two-dimensional control of multiple ions demonstrated
in this system may be crucial for the realization of scalable ion trap quantum
computation and the implementation of quantum networks.Comment: 3 pages, 5 figure
Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation
Recent advances in quantum information processing with trapped ions have
demonstrated the need for new ion trap architectures capable of holding and
manipulating chains of many (>10) ions. Here we present the design and detailed
characterization of a new linear trap, microfabricated with scalable
complementary metal-oxide-semiconductor (CMOS) techniques, that is well-suited
to this challenge. Forty-four individually controlled DC electrodes provide the
many degrees of freedom required to construct anharmonic potential wells,
shuttle ions, merge and split ion chains, precisely tune secular mode
frequencies, and adjust the orientation of trap axes. Microfabricated
capacitors on DC electrodes suppress radio-frequency pickup and excess
micromotion, while a top-level ground layer simplifies modeling of electric
fields and protects trap structures underneath. A localized aperture in the
substrate provides access to the trapping region from an oven below, permitting
deterministic loading of particular isotopic/elemental sequences via
species-selective photoionization. The shapes of the aperture and
radio-frequency electrodes are optimized to minimize perturbation of the
trapping pseudopotential. Laboratory experiments verify simulated potentials
and characterize trapping lifetimes, stray electric fields, and ion heating
rates, while measurement and cancellation of spatially-varying stray electric
fields permits the formation of nearly-equally spaced ion chains.Comment: 17 pages (including references), 7 figure
Early respiratory viral infections in infants with cystic fibrosis
This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Background
Viral infections contribute to morbidity in cystic fibrosis (CF), but the impact of respiratory viruses on the development of airway disease is poorly understood.
Methods
Infants with CF identified by newborn screening were enrolled prior to 4 months of age to participate in a prospective observational study at 4 centers. Clinical data were collected at clinic visits and weekly phone calls. Multiplex PCR assays were performed on nasopharyngeal swabs to detect respiratory viruses during routine visits and when symptomatic. Participants underwent bronchoscopy with bronchoalveolar lavage (BAL) and a subset underwent pulmonary function testing. We present findings through 8.5 months of life.
Results
Seventy infants were enrolled, mean age 3.1 ± 0.8 months. Rhinovirus was the most prevalent virus (66%), followed by parainfluenza (19%), and coronavirus (16%). Participants had a median of 1.5 viral positive swabs (range 0–10). Past viral infection was associated with elevated neutrophil concentrations and bacterial isolates in BAL fluid, including recovery of classic CF bacterial pathogens. When antibiotics were prescribed for respiratory-related indications, viruses were identified in 52% of those instances.
Conclusions
Early viral infections were associated with greater neutrophilic inflammation and bacterial pathogens. Early viral infections appear to contribute to initiation of lower airway inflammation in infants with CF. Antibiotics were commonly prescribed in the setting of a viral infection. Future investigations examining longitudinal relationships between viral infections, airway microbiome, and antibiotic use will allow us to elucidate the interplay between these factors in young children with CF
Evolution of pulmonary inflammation and nutritional status in infants and young children with cystic fibrosis
Introduction Improved nutrition is the major proven
benefit of newborn screening programmes for cystic
fibrosis (CF) and is associated with better clinical
outcomes. It was hypothesised that early pulmonary
inflammation and infection in infants with CF is
associated with worse nutrition.
Methods Weight, height and pulmonary inflammation
and infection in bronchoalveolar lavage (BAL) were
assessed shortly after diagnosis in infants with CF and
again at 1, 2 and 3 years of age. Body mass index (BMI)
was expressed as z-scores. Inflammatory cells and
cytokines (interleukin 1b (IL-1b), IL-6, IL-8 and tumour
necrosis factor a (TNFa)), free neutrophil elastase
activity and myeloperoxidase were measured in BAL.
Mixed effects modelling was used to assess longitudinal
associations between pulmonary inflammation,
pulmonary infection (Staphylococcus aureus and
Pseudomonas aeruginosa) and BMI z-score after
adjusting for potential confounding factors.
Results Forty-two infants were studied (16 (38%) male;
39 (93%) pancreatic insufficient); 36 were diagnosed by
newborn screening (at median age 4 weeks) and six by
early clinical diagnosis (meconium ileus). Thirty-one
(74%) received antistaphylococcal antibiotics. More than
two-thirds were asymptomatic at each assessment.
Mean BMI z-scores wer
- …
