243 research outputs found
Allograft and Xenograft Acceptance under FK‐506 and Other Immunosuppressant Treatment
We will focus on two issues, both involving, but not confined to FK-506: first, the meaning of the graft acceptance, which is, after all, the objective of immunosuppression for the transplant surgeon; and second, how to take the next great step of xenotransplantation
STRAIN DIFFERENCES IN THE EXPRESSION OF THE EPA-1-RESTRICTING ELEMENT
Epa-1-specific cytotoxic T lymphocytes (CTL) lyse epidermal cells (EC) of different Epa-1 + H-2 k strains, such as AKR, CBA, C58, and RF, at different levels. We used an H-2K k -specific monoclonal antibody (mAb) to test the hypothesis that this phenomenon is due to differences in the H-2-restricting element. Initially, we established the specificity of this mAb for the Epa-1-restricting element by demonstrating its capacity to inhibit the lysis of CBA EC by Epa-1-specific CTL. We then used it as the probe in a cellular radioimmunoassay to quantify the expression of the restricting element by EC of different H-2 k strains. We found that C58 and RF EC bound significantly less of the mAb than did CBA EC. Although AKR also bound less of the mAb than did CBA EC, the difference was not statistically significant. To examine the generality of this phenomenon, we quantified the expression of K k antigens on spleen cells (SC) of the same four strains. We found that RF SC, but not AKR or C58 SC, bound significantly less of the K k mAb than did CBA SC. Thus, the differential CTL lysis of Epa-1 + EC of different strains probably reflects differences in expression of the H-2-restricting element rather than of the nominal antigen.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75485/1/j.1744-313X.1987.tb00375.x.pd
Bi-stable tunneling current through a molecular quantum dot
An exact solution is presented for tunneling through a negative-U d-fold
degenerate molecular quantum dot weakly coupled to electrical leads. The tunnel
current exhibits hysteresis if the level degeneracy of the negative-U dot is
larger than two (d>2). Switching occurs in the voltage range V1 < V < V2 as a
result of attractive electron correlations in the molecule, which open up a new
conducting channel when the voltage is above the threshold bias voltage V2.
Once this current has been established, the extra channel remains open as the
voltage is reduced down to the lower threshold voltage V1. Possible
realizations of the bi-stable molecular quantum dots are fullerenes, especially
C60, and mixed-valence compounds.Comment: 5 pages, 1 figure. (v2) Figure updated to compare the current
hysteresis for degeneracies d=4 and d>>1 of the level in the dot, minor
corrections in the text. To appear in Phys. Rev.
Tissue Destruction Resulting from the Interaction of Cytotoxic T Cells and Their Targets a
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73703/1/j.1749-6632.1988.tb36330.x.pd
Recommended from our members
Optical signatures of silicon-vacancy spins in diamond
Colour centres in diamond have emerged as versatile tools for solid-state quantum technologies ranging from quantum information to metrology, where the nitrogen-vacancy centre is the most studied to date. Recently, this toolbox has expanded to include novel colour centres to realize more efficient spin-photon quantum interfaces. Of these, the silicon-vacancy centre stands out with highly desirable photonic properties. The challenge for utilizing this centre is to realize the hitherto elusive optical access to its electronic spin. Here we report spin-tagged resonance fluorescence from the negatively charged silicon-vacancy centre. Our measurements reveal a spin-state purity approaching unity in the excited state, highlighting the potential of the centre as an efficient spin-photon quantum interface
- …
