3,741 research outputs found

    Polyakov Loops and Magnetic Screening from Monopoles in SU(2) Lattice Gauge Theory

    Get PDF
    We present results from magnetic monopoles in SU(2)SU(2) lattice gauge theory at finite temperature. The lattices are 163×Nt16^{3}\times N_{t}, for Nt=4,6,8,12N_{t}=4,6,8,12, at β=2.5115\beta=2.5115. Quantities discussed are: the spacial string tension, Polyakov loops, and the screening of timelike and spacelike magnetic currents.Comment: 5 pages, four Postscript figures, Late

    Monopoles at Finite Volume and Temperature in SU(2) Lattice Gauge Theory

    Full text link
    We resolve a discrepancy between the SU(2) spacial string tension at finite temperature, and the value obtained by monopoles in the maximum Abelian gauge. Previous work had incorrectly omitted a term due to Dirac sheets. When this term is included, the monopole and full SU(2) determinations of the spacial string tension agree to within the statistical errors of the monopole calculation.Comment: 8 pages, Latex files: msum.tex,msum.aux packaged with uufile

    Confinement by Monopoles in the Positive Plaquette Model of SU(2) Lattice Gauge Theory

    Full text link
    Confinement via 't Hooft-Mandelstam monopoles is studied for the positive plaquette model in SU(2) lattice gauge theory. Positive plaquette model configurations are projected into the maximum abelian gauge and the magnetic current extracted. The resulting magnetic current is used to compute monopole contributions to Wilson loops and extract a monopole contribution to the string tension. As was previously found for the Wilson action, the monopole contribution to the string tension agrees with the string tension calculated directly from the SU(2) links. The fact that the positive plaquette model suppresses Z2 monopoles and vortices is discussed.Comment: 8 pages, one Postscript figure, Latex, uses psfig files: posplaq.tex,posplaq.aux,pp_1_3.ps packaged with uufile

    Monopoles contra vortices in SU(2) lattice gauge theory?

    Get PDF
    We show that the scenario of vortex induced confinement of center--projected SU(2) lattice gauge theory is not necessarily in conflict with the findings in the positive plaquette model.Comment: 3 pages, LaTeX, comment to be published in Phys. Rev.

    Bentham and Birth Control: the Misreading

    Get PDF

    A map and a pipe : a new approach to characterizing erosion-corrosion regimes of Fe in three dimensions using CFD modelling

    Get PDF
    In studies of erosion-corrosion, much work has been carried out in recent years to identify regimes of behaviour. Such regimes describe the transition between the erosion and corrosion dominated mechanisms. They can also be used, by assigning various criteria, to identify other regimes of behaviour such as extent of "synergy/antagonism" in the process, so-called "additive" behaviour and the extent of wastage. Despite this work, there has been very little effort to combine the two dimensional erosion-corrosion map with CFD modelling approaches, in which the characteristics of the fluid are accounted for in the regime description. This means that extrapolation of such maps in two dimensions to a three dimensional real surface presents some difficulties. However, it is these surfaces that corrosion engineers are required to tailor, either through modification of the material composition, the surface or the process parameters, for optimum erosion-corrosion resistance. In this paper, a methodology is generated to combine the concepts of CFD modelling, and the erosion-corrosion regime map for a specific geometry and for a range of pure metals in descending order in the Galvanic series. The changes in regimes are presented as a function of variation in the erosion and corrosion variables i.e. particle size, hardness and solution pH. Erosion-corrosion regimes are presented, based on the model results, showing the wide range of mechanistic and wastage mechanisms possible over the component surface

    The Gribov Ambiguity for Maximal Abelian and Center Gauges in SU(2) Lattice Gauge Theory

    Get PDF
    We present results for the fundamental string tension in SU(2) lattice gauge theory after projection to maximal abelian and direct maximal center gauges. We generate 20 Gribov copies/configuration. Abelian and center projected string tensions slowly decrease as higher values of the gauge functionals are reached.Comment: 3 pages, latex, 1 postscript figure, presented at Lattice 2000(Topology and Vacuum
    corecore