3,363 research outputs found

    Postsettlement growth of two estuarine crab species, Chasmagnathus granulata and Cyrtograpsus angulatus (Crustacea, Decapoda, Grapsidae): laboratory and field observations

    Get PDF
    The estuarine grapsid crabs Chasmagnathus granulata and Cyrtograpsus angulatus belong to the most typical and dominant inhabitants of brackish coastal lagoons in southeastern South America. In a combined laboratory and field investigation of juvenile growth, we measured the increase in body size in these species under controlled conditions as well as in field experiments (in Mar Chiquita lagoon, Argentina), seasonal changes in size frequency distribution of a natural population, and growth related changes in selected morphometric traits of male and female juveniles (relations between carapace width, carapace length, propodus height and length of the cheliped, and pleon width). At 24°C, Cy. angulatus grew faster than Ch. granulata; it reached the crab-9 instar (C9; 13 mm carapace width) after 92 days, while Ch. granulata required 107 days to reach the C8 instar (7.4 mm). At 12°C, growth ceased in both species. The pleon begins to show sexual differences in the C5 (Cy. angulatus) and C8 instar (Ch. granulata), respectively, while the chelae differentiate earlier in Ch. granulata than in Cy. angulatus (in C4 vs C6). In the field, growth was maximal in summer, and was generally faster than in laboratory cultures. However, there is great individual variability in size (about 25% even in the first crab instar) and in size increments at ecdysis, increasing throughout juvenile growth. Our data indicate that, in the field, small-scale and short-term variations in feeding conditions, temperature, and salinity account for an extremely high degree of variability in the absolute and relative rates of growth as well as in the time to sexual differentiation

    Scratching the Bose surface

    Full text link
    This is a `News and Views' article discussing recent proposals for ground states of many boson systems which are neither superfluids nor Mott insulators.Comment: 4 pages, 1 figur

    A helium-3 refrigerator employing capillary confinement of liquid cryogen

    Get PDF
    A condensation refrigerator suitable for operation in a zero gravity space environment was constructed. The condensed liquid refrigerant is confined by surface tension inside a porous metal matrix. Helium-4 and helium-3 gases were condensed and held in a copper matrix. Evaporative cooling of confined liquid helium-4 resulted in a temperature of 1.4K. Using a zeolite adsorption pump external to the cryostat, a temperature of 0.6 K was achieved through evaporative cooling of liquid helium-3. The amount of time required for complete evaporation of a controlled mass of liquid helium-4 contained in the copper matrix was measured as a function of the applied background power. For heating powers below 18 mW the measured times are consistent with the normal boiling of the confined volume of liquid refrigerant. At background powers above 18 mW the rapid rise in the temperature of the copper matrix the signature of the absence of confined liquid occurs in a time a factor of two shorter than that expected on the basis of an extrapolation of the low power data

    Сучасні теорії та моделі місцевого самоврядування.

    Get PDF
    Співак Д.П. Сучасні теорії та моделі місцевого самоврядування. / Д.П. Співак //Актуальні проблеми політики : зб. наук. пр. / гол. ред. С. В. Ківалов ; відп. за вип. Л. І. Кормич. – Одеса : Національний університет "Одеська юридична академія" : Південноукраїнський центр гендерних проблем, 2012. – Вип. 44. – C.112 - 124.In article modern theories and conceptions of understanding essence of local home rule are considered. One's conceptions are analysed depending on exist- ing in political reality of models of local home rule. The practical experience of foreign countries of using different models of local home rule is studied

    Quantum Lifetime of Two-Dimensional Holes

    Get PDF
    The quantum lifetime of two-dimensional holes in a GaAs/AlGaAs double quantum well is determined via tunneling spectroscopy. At low temperatures the lifetime is limited by impurity scattering but at higher temperatures hole-hole Coulomb scattering dominates. Our results are consistent with Fermi liquid theory, at least up to r_s = 11. At the highest temperatures the measured width of the hole spectral function becomes comparable to the Fermi energy. A new, tunneling-spectroscopic, method for determining the in-plane effective mass of the holes is also demonstrated.Comment: 5 pages, 4 figures. Published versio

    Polynomial functors and combinatorial Dyson-Schwinger equations

    Full text link
    We present a general abstract framework for combinatorial Dyson-Schwinger equations, in which combinatorial identities are lifted to explicit bijections of sets, and more generally equivalences of groupoids. Key features of combinatorial Dyson-Schwinger equations are revealed to follow from general categorical constructions and universal properties. Rather than beginning with an equation inside a given Hopf algebra and referring to given Hochschild 11-cocycles, our starting point is an abstract fixpoint equation in groupoids, shown canonically to generate all the algebraic structure. Precisely, for any finitary polynomial endofunctor PP defined over groupoids, the system of combinatorial Dyson-Schwinger equations X=1+P(X)X=1+P(X) has a universal solution, namely the groupoid of PP-trees. The isoclasses of PP-trees generate naturally a Connes-Kreimer-like bialgebra, in which the abstract Dyson-Schwinger equation can be internalised in terms of canonical B+B_+-operators. The solution to this equation is a series (the Green function) which always enjoys a Fa\`a di Bruno formula, and hence generates a sub-bialgebra isomorphic to the Fa\`a di Bruno bialgebra. Varying PP yields different bialgebras, and cartesian natural transformations between various PP yield bialgebra homomorphisms and sub-bialgebras, corresponding for example to truncation of Dyson-Schwinger equations. Finally, all constructions can be pushed inside the classical Connes-Kreimer Hopf algebra of trees by the operation of taking core of PP-trees. A byproduct of the theory is an interpretation of combinatorial Green functions as inductive data types in the sense of Martin-L\"of Type Theory (expounded elsewhere).Comment: v4: minor adjustments, 49pp, final version to appear in J. Math. Phy

    Chiral Anomaly and Classical Negative Magnetoresistance of Weyl Metals

    Full text link
    We consider the classical magnetoresistance of a Weyl metal in which the electron Fermi surface possess nonzero fluxes of the Berry curvature. Such a system may exhibit large negative magnetoresistance with unusual anisotropy as a function of the angle between the electric and magnetic fields. In this case the system can support a new type of plasma waves. These phenomena are consequences of chiral anomaly in electron transport theory.Comment: 4 pages, 2 figure

    Phase coherent transport in SrTiO3/LaAlO3 interfaces

    Full text link
    The two dimensional electron gas formed between the two band insulators SrTiO3 and LaAlO3 exhibits a variety of interesting physical properties which make it an appealing material for use in future spintronics and/or quantum computing devices. For this kind of applications electrons have to retain their phase memory for sufficiently long times or length. Using a mesoscopic size device we were able to extract the phase coherence length, and its temperature variation. We find the dephasing rate to have a power law dependence on temperature. The power depends on the temperature range studied and sheet resistance as expected from dephasing due to strong electron-electron interactions.Comment: Submitted to Phys. Rev

    Mesoscopic oscillations of the conductance of disordered metallic samples as a function of temperature

    Full text link
    We show theoretically and experimentally that the conductance of small disordered samples exhibits random oscillations as a function of temperature. The amplitude of the oscillations decays as a power law of temperature, and their characteristic period is of the order of the temperature itself

    Generalized Paraxial Ray Trace Procedure Derived from Geodesic Deviation

    Full text link
    Paraxial ray tracing procedures have become widely accepted techniques for acoustic models in seismology and underwater acoustics. To date a generic form of these procedures including fluid motion and time dependence has not appeared in the literature. A detailed investigation of the characteristic curves of the equations of hydrodynamics allows for an immediate generalization of the procedure to be extracted from the equation form geodesic deviation. The general paraxial ray trace equations serve as an ideal supplement to ordinary ray tracing in predicting the deformation of acoustic beams in random environments. The general procedure is derived in terms of affine parameterization and in a coordinate time parameterization ideal for application to physical acoustic ray propagation. The formalism is applied to layered media, where the deviation equation reduces to a second order differential equation for a single field with a general solution in terms of a depth integral along the ray path. Some features are illustrated through special cases which lead to exact solutions in terms of either ordinary or special functions.Comment: Original; 40 pages (double spaced), 1 figure Replaced version; 36 pages single spaced, 7 figures. Expanded content; Complete derivation of the equations from the equations of hydrodynamics, introduction of an auxiliary basis for three dimensional wave-front modeling. Typos in text and equations correcte
    corecore