3,055 research outputs found
Time variation of the fine structure constant in decrumpling or TVSD model
Within the framework of a model universe with time variable space dimension
(TVSD), known as decrumpling or TVSD model, we study the time variation of the
fine structure constant. Using observational bounds on the present time
variation of the fine structure constant, we are able to obtain the present
time variation of spatial dimensions.Comment: 10 pages, accepted for publication in Int.J.Mod.Phys.
Approximate Analytic Solution for the Spatiotemporal Evolution of Wave Packets undergoing Arbitrary Dispersion
We apply expansion methods to obtain an approximate expression in terms of
elementary functions for the space and time dependence of wave packets in a
dispersive medium. The specific application to pulses in a cold plasma is
considered in detail, and the explicit analytic formula that results is
provided. When certain general initial conditions are satisfied, these
expressions describe the packet evolution quite well. We conclude by employing
the method to exhibit aspects of dispersive pulse propagation in a cold plasma,
and suggest how predicted and experimental effects may be compared to improve
the theoretical description of a medium's dispersive properties.Comment: 17 pages, 4 figures, RevTe
Transient terahertz spectroscopy of excitons and unbound carriers in quasi two-dimensional electron-hole gases
We report a comprehensive experimental study and detailed model analysis of
the terahertz dielectric response and density kinetics of excitons and unbound
electron-hole pairs in GaAs quantum wells. A compact expression is given, in
absolute units, for the complex-valued terahertz dielectric function of
intra-excitonic transitions between the 1s and higher-energy exciton and
continuum levels. It closely describes the terahertz spectra of resonantly
generated excitons. Exciton ionization and formation are further explored,
where the terahertz response exhibits both intra-excitonic and Drude features.
Utilizing a two-component dielectric function, we derive the underlying exciton
and unbound pair densities. In the ionized state, excellent agreement is found
with the Saha thermodynamic equilibrium, which provides experimental
verification of the two-component analysis and density scaling. During exciton
formation, in turn, the pair kinetics is quantitatively described by a Saha
equilibrium that follows the carrier cooling dynamics. The terahertz-derived
kinetics is, moreover, consistent with time-resolved luminescence measured for
comparison. Our study establishes a basis for tracking pair densities via
transient terahertz spectroscopy of photoexcited quasi-two-dimensional
electron-hole gases.Comment: 14 pages, 8 figures, final versio
Apparent Superluminal Behavior
The apparent superluminal propagation of electromagnetic signals seen in
recent experiments is shown to be the result of simple and robust properties of
relativistic field equations. Although the wave front of a signal passing
through a classically forbidden region can never move faster than light, an
attenuated replica of the signal is reproduced ``instantaneously'' on the other
side of the barrier. The reconstructed signal, causally connected to the
forerunner rather than the bulk of the input signal, appears to move through
the barrier faster than light.Comment: 8 pages, no figure
Resolution of the Klein Paradox
We present a resolution of the Klein paradox within the framework of
one-particle relativistic quantum mechanics. Not only reflection becomes total
but the vacuum remains neutral as well. This is accomplished by replacing the
pair production process with virtual negative energy "incidence" within the
barrier in a similar manner to what is done with image charges in electrostatic
and virtual sources in optics.Comment: 9 pages, 8 figure
Radiative damping: a case study
We are interested in the motion of a classical charge coupled to the Maxwell
self-field and subject to a uniform external magnetic field, B. This is a
physically relevant, but difficult dynamical problem, to which contributions
range over more than one hundred years. Specifically, we will study the
Sommerfeld-Page approximation which assumes an extended charge distribution at
small velocities. The memory equation is then linear and many details become
available. We discuss how the friction equation arises in the limit of "small"
B and contrast this result with the standard Taylor expansion resulting in a
second order equation for the velocity of the charge.Comment: 4 figure
On the mutual polarization of two He-4 atoms
We propose a simple method based on the standard quantum-mechanical
perturbation theory to calculate the mutual polarization of two atoms He^4.Comment: 9 pages, 1 table; the article is revised and the calculation is
essentially refined; v4: final version, the Introduction is delete
Absence of a consistent classical equation of motion for a mass-renormalized point charge
The restrictions of analyticity, relativistic (Born) rigidity, and negligible
O(a) terms involved in the evaluation of the self electromagnetic force on an
extended charged sphere of radius "a" are explicitly revealed and taken into
account in order to obtain a classical equation of motion of the extended
charge that is both causal and conserves momentum-energy. Because the
power-series expansion used in the evaluation of the self force becomes invalid
during transition time intervals immediately following the application and
termination of an otherwise analytic externally applied force, transition
forces must be included during these transition time intervals to remove the
noncausal pre-acceleration and pre-deceleration from the solutions to the
equation of motion without the transition forces. For the extended charged
sphere, the transition forces can be chosen to maintain conservation of
momentum-energy in the causal solutions to the equation of motion within the
restrictions of relativistic rigidity and negligible O(a) terms under which the
equation of motion is derived. However, it is shown that renormalization of the
electrostatic mass to a finite value as the radius of the charge approaches
zero introduces a violation of momentum-energy conservation into the causal
solutions to the equation of motion of the point charge if the magnitude of the
external force becomes too large. That is, the causal classical equation of
motion of a point charge with renormalized mass experiences a high acceleration
catastrophe.Comment: 13 pages, No figure
Snell's Law from an Elementary Particle Viewpoint
Snell's law of light deflection between media with different indices of
refraction is usually discussed in terms of the Maxwell electromagnetic wave
theory. Snell's law may also be derived from a photon beam theory of light
rays. This latter particle physics view is by far the most simple one for
understanding the laws of refraction.Comment: ReVTeX Format 2 *.eps figure
Can multistate dark matter annihilation explain the high-energy cosmic ray lepton anomalies?
Multistate dark matter (DM) models with small mass splittings and couplings
to light hidden sector bosons have been proposed as an explanation for the
PAMELA/Fermi/H.E.S.S. high-energy lepton excesses. We investigate this proposal
over a wide range of DM density profiles, in the framework of concrete models
with doublet or triplet dark matter and a hidden SU(2) gauge sector that mixes
with standard model hypercharge. The gauge coupling is bounded from below by
the DM relic density, and the Sommerfeld enhancement factor is explicitly
computable for given values of the DM and gauge boson masses M, mu and the
(largest) dark matter mass splitting delta M_{12}. Sommerfeld enhancement is
stronger at the galactic center than near the Sun because of the radial
dependence of the DM velocity profile, which strengthens the inverse Compton
(IC) gamma ray constraints relative to usual assumptions. We find that the
PAMELA/Fermi/H.E.S.S. lepton excesses are marginally compatible with the model
predictions, and with CMB and Fermi gamma ray constraints, for M ~ 800 GeV, mu
~ 200 MeV, and a dark matter profile with noncuspy Einasto parameters alpha >
0.20, r_s ~ 30 kpc. We also find that the annihilating DM must provide only a
subdominant (< 0.4) component of the total DM mass density, since otherwise the
boost factor due to Sommerfeld enhancement is too large.Comment: 20 pages, 12 figures; v2: Corrected branching ratio for ground state
DM annihilations into leptons, leading to boost factors that are larger than
allowed. Added explicit results for doublet DM model. Some conclusions
changed; main conclusion of tension between inverse Compton constraints and
N-body simulations of halo profiles is unchange
- …
