7 research outputs found

    Factorizations of Elements in Noncommutative Rings: A Survey

    Full text link
    We survey results on factorizations of non zero-divisors into atoms (irreducible elements) in noncommutative rings. The point of view in this survey is motivated by the commutative theory of non-unique factorizations. Topics covered include unique factorization up to order and similarity, 2-firs, and modular LCM domains, as well as UFRs and UFDs in the sense of Chatters and Jordan and generalizations thereof. We recall arithmetical invariants for the study of non-unique factorizations, and give transfer results for arithmetical invariants in matrix rings, rings of triangular matrices, and classical maximal orders as well as classical hereditary orders in central simple algebras over global fields.Comment: 50 pages, comments welcom

    A semigroup-theoretical view of direct-sum decompositions and associated combinatorial problems

    No full text
    Let R be a ring and let C be a small class of right R-modules which is closed under finite direct sums, direct summands, and isomorphisms. Let V(C) denote a set of representatives of isomorphism classes in C and, for any module M in C, let [M] denote the unique element in V(C) isomorphic to M. Then V(C) is a reduced commutative semigroup with operation defined by [M] + [N] = [M ⊕ N], and this semigroup carries all information about direct-sum decompositions of modules in C. This semigroup-theoretical point of view has been prevalent in the theory of direct-sum decompositions since it was shown that if EndR(M) is semilocal for all M C, then V(C) is a Krull monoid. Suppose that the monoid V(C) is Krull with a finitely generated class group (for example, when C is the class of finitely generated torsion-free modules and R is a one-dimensional reduced Noetherian local ring). In this case, we study the arithmetic of V(C) using new methods from zero-sum theory. Furthermore, based on module-theoretic work of Lam, Levy, Robson, and others we study the algebraic and arithmetic structure of the monoid V(C) for certain classes of modules over Prüfer rings and hereditary Noetherian prime rings

    A semigroup-theoretical view of direct-sum decompositions and associated combinatorial problems

    No full text
    Let R be a ring and let C be a small class of right R-modules which is closed under finite direct sums, direct summands, and isomorphisms. Let V(C) denote a set of representatives of isomorphism classes in C and, for any module M in C, let [M] denote the unique element in V(C) isomorphic to M. Then V(C) is a reduced commutative semigroup with operation defined by [M] + [N] = [M ⊕ N], and this semigroup carries all information about direct-sum decompositions of modules in C. This semigroup-theoretical point of view has been prevalent in the theory of direct-sum decompositions since it was shown that if EndR(M) is semilocal for all M C, then V(C) is a Krull monoid. Suppose that the monoid V(C) is Krull with a finitely generated class group (for example, when C is the class of finitely generated torsion-free modules and R is a one-dimensional reduced Noetherian local ring). In this case, we study the arithmetic of V(C) using new methods from zero-sum theory. Furthermore, based on module-theoretic work of Lam, Levy, Robson, and others we study the algebraic and arithmetic structure of the monoid V(C) for certain classes of modules over Prüfer rings and hereditary Noetherian prime rings

    SYSTEMS OF SETS OF LENGTHS: TRANSFER KRULL MONOIDS VERSUS WEAKLY KRULL MONOIDS

    No full text
    Transfer Krull monoids are monoids which allow a weak transfer homomorphism to a commutative Krull monoid, and hence the system of sets of lengths of a transfer Krull monoid coincides with that of the associated commutative Krull monoid. We unveil a couple of new features of the system of sets of lengths of transfer Krull monoids over finite abelian groups G, and we provide a complete description of the system for all groups G having Davenport constant D(G) = 5 (these are the smallest groups for which no such descriptions were known so far). Under reasonable algebraic finiteness assumptions, sets of lengths of transfer Krull monoids and of weakly Krull monoids satisfy the Structure Theorem for Sets of Lengths. In spite of this common feature we demonstrate that systems of sets of lengths for a variety of classes of weakly Krull monoids are different from the system of sets of lengths of any transfer Krull monoid
    corecore