828 research outputs found

    Batch Informed Trees (BIT*): Sampling-based Optimal Planning via the Heuristically Guided Search of Implicit Random Geometric Graphs

    Full text link
    In this paper, we present Batch Informed Trees (BIT*), a planning algorithm based on unifying graph- and sampling-based planning techniques. By recognizing that a set of samples describes an implicit random geometric graph (RGG), we are able to combine the efficient ordered nature of graph-based techniques, such as A*, with the anytime scalability of sampling-based algorithms, such as Rapidly-exploring Random Trees (RRT). BIT* uses a heuristic to efficiently search a series of increasingly dense implicit RGGs while reusing previous information. It can be viewed as an extension of incremental graph-search techniques, such as Lifelong Planning A* (LPA*), to continuous problem domains as well as a generalization of existing sampling-based optimal planners. It is shown that it is probabilistically complete and asymptotically optimal. We demonstrate the utility of BIT* on simulated random worlds in R2\mathbb{R}^2 and R8\mathbb{R}^8 and manipulation problems on CMU's HERB, a 14-DOF two-armed robot. On these problems, BIT* finds better solutions faster than RRT, RRT*, Informed RRT*, and Fast Marching Trees (FMT*) with faster anytime convergence towards the optimum, especially in high dimensions.Comment: 8 Pages. 6 Figures. Video available at http://www.youtube.com/watch?v=TQIoCC48gp

    Batch Informed Trees (BIT*): Informed Asymptotically Optimal Anytime Search

    Full text link
    Path planning in robotics often requires finding high-quality solutions to continuously valued and/or high-dimensional problems. These problems are challenging and most planning algorithms instead solve simplified approximations. Popular approximations include graphs and random samples, as respectively used by informed graph-based searches and anytime sampling-based planners. Informed graph-based searches, such as A*, traditionally use heuristics to search a priori graphs in order of potential solution quality. This makes their search efficient but leaves their performance dependent on the chosen approximation. If its resolution is too low then they may not find a (suitable) solution but if it is too high then they may take a prohibitively long time to do so. Anytime sampling-based planners, such as RRT*, traditionally use random sampling to approximate the problem domain incrementally. This allows them to increase resolution until a suitable solution is found but makes their search dependent on the order of approximation. Arbitrary sequences of random samples approximate the problem domain in every direction simultaneously and but may be prohibitively inefficient at containing a solution. This paper unifies and extends these two approaches to develop Batch Informed Trees (BIT*), an informed, anytime sampling-based planner. BIT* solves continuous path planning problems efficiently by using sampling and heuristics to alternately approximate and search the problem domain. Its search is ordered by potential solution quality, as in A*, and its approximation improves indefinitely with additional computational time, as in RRT*. It is shown analytically to be almost-surely asymptotically optimal and experimentally to outperform existing sampling-based planners, especially on high-dimensional planning problems.Comment: International Journal of Robotics Research (IJRR). 32 Pages. 16 Figure

    Informed RRT*: Optimal Sampling-based Path Planning Focused via Direct Sampling of an Admissible Ellipsoidal Heuristic

    Full text link
    Rapidly-exploring random trees (RRTs) are popular in motion planning because they find solutions efficiently to single-query problems. Optimal RRTs (RRT*s) extend RRTs to the problem of finding the optimal solution, but in doing so asymptotically find the optimal path from the initial state to every state in the planning domain. This behaviour is not only inefficient but also inconsistent with their single-query nature. For problems seeking to minimize path length, the subset of states that can improve a solution can be described by a prolate hyperspheroid. We show that unless this subset is sampled directly, the probability of improving a solution becomes arbitrarily small in large worlds or high state dimensions. In this paper, we present an exact method to focus the search by directly sampling this subset. The advantages of the presented sampling technique are demonstrated with a new algorithm, Informed RRT*. This method retains the same probabilistic guarantees on completeness and optimality as RRT* while improving the convergence rate and final solution quality. We present the algorithm as a simple modification to RRT* that could be further extended by more advanced path-planning algorithms. We show experimentally that it outperforms RRT* in rate of convergence, final solution cost, and ability to find difficult passages while demonstrating less dependence on the state dimension and range of the planning problem.Comment: 8 pages, 11 figures. Videos available at https://www.youtube.com/watch?v=d7dX5MvDYTc and https://www.youtube.com/watch?v=nsl-5MZfwu

    On Recursive Random Prolate Hyperspheroids

    Full text link
    This technical note analyzes the properties of a random sequence of prolate hyperspheroids with common foci. Each prolate hyperspheroid in the sequence is defined by a sample drawn randomly from the previous volume such that the sample lies on the new surface (Fig. 1). Section 1 defines the prolate hyperspheroid coordinate system and the resulting differential volume, Section 2 calculates the expected value of the new transverse diameter given a uniform distribution over the existing prolate hyperspheroid, and Section 3 calculates the convergence rate of this sequence. For clarity, the differential volume and some of the identities used in the integration are verified in Appendix A through a calculation of the volume of a general prolate hyperspheroid.Comment: 11 pages, 2 figure

    Scalar Field Dark Matter: non-spherical collapse and late time behavior

    Get PDF
    We show the evolution of non-spherically symmetric balls of a self-gravitating scalar field in the Newtonian regime or equivalently an ideal self-gravitating condensed Bose gas. In order to do so, we use a finite differencing approximation of the Shcr\"odinger-Poisson (SP) system of equations with axial symmetry in cylindrical coordinates. Our results indicate: 1) that spherically symmetric ground state equilibrium configurations are stable against non-spherical perturbations and 2) that such configurations of the SP system are late-time attractors for non-spherically symmetric initial profiles of the scalar field, which is a generalization of such behavior for spherically symmetric initial profiles. Our system and the boundary conditions used, work as a model of scalar field dark matter collapse after the turnaround point. In such case, we have found that the scalar field overdensities tolerate non-spherical contributions to the profile of the initial fluctuation.Comment: 8 revtex pages, 10 eps figures. Accepted for publication in PR

    Hidden Degeneracy in the Brick Wall Model of Black Holes

    Get PDF
    Quantum field theory in the near-horizon region of a black hole predicts the existence of an infinite number of degenerate modes. Such a degeneracy is regulated in the brick wall model by the introduction of a short distance cutoff. In this Letter we show that states of the brick wall model with non zero energy admit a further degeneracy for any given finite value of the cutoff. The black hole entropy is calculated within the brick wall model taking this degeneracy into account. Modes with complex frequencies however do not exhibit such a degeneracy.Comment: 8 pages, Latex fil

    The Provable Virtue of Laziness in Motion Planning

    Full text link
    The Lazy Shortest Path (LazySP) class consists of motion-planning algorithms that only evaluate edges along shortest paths between the source and target. These algorithms were designed to minimize the number of edge evaluations in settings where edge evaluation dominates the running time of the algorithm; but how close to optimal are LazySP algorithms in terms of this objective? Our main result is an analytical upper bound, in a probabilistic model, on the number of edge evaluations required by LazySP algorithms; a matching lower bound shows that these algorithms are asymptotically optimal in the worst case

    Comparison of intramedullary nailing versus proximal locking plating in the management of closed extra-articular proximal tibial fracture

    Get PDF
    Background: To compare the outcomes of closed reduction and expert tibial nailing (ETN) versus minimally invasive proximal tibial plating in treating proximal extraarticular tibial fractures.Methods: This study included 30 cases of extraarticular proximal tibial shaft fractures. They were admitted to our department between March 2014 and June 2016 and treated respectively by closed reduction and ETN (group A, n=15) or minimally invasive proximal tibial plating (group B, n=15). To compare the therapeutic effects between two groups, the intraoperative condition, post-operative function, related complications and malalignment were investigated.Results: All the patients were successfully followed up till radiological union. The average union time for group A was 14.2 months and for group B was 16.7 months. 3 patients in group A developed delayed union and was treated with dynamization and ultimately lead to union whereas 1 patient developed non-union in group B. There were 3 cases of superficial infection in group B cured by antibiotics and repeated dressing change. Moreover, group A showed better result in terms of intraoperative blood loss, operation time, postoperative weight bearing time and fracture union time. Functional scores as calculated by the knee rating scale of the hospital for special surgery, 12 (80%) had excellent results in group A compared to 10 (66.66%) in group B which was not statistically significant.Conclusions: Compared with plate and screw fixation, ETN fixation has the advantages of fewer complications, shorter operation time, being less invasive, earlier postoperative rehabilitation and weight bearing, quicker fracture union and better functional recovery, thus being an effective way to treat extra articular proximal tibial fractures

    Similarities in seroprevalence of Toxoplasma gondii, Trichinella spp., Trichuris suis and Ascaris suum in swine in the conventional and antibiotic free swine production systems

    Get PDF
    Helmith parasite infections in swine represent a significant, but understudied health concern for both the swine industry and consumers. While many parasitic infections cause subclinical infections, infected swine pose a public health risk from consumption of contaminated meat products

    Bulk Kalb-Ramond field in Randall Sundrum scenario

    Full text link
    We have considered the most general gauge invariant five-dimensional action of a second rank antisymmetric Kalb-Ramond tensor gauge theory, including a topological term of the form ϵABLMNBABHLMN\epsilon^{ABLMN}B_{AB}H_{LMN} in a Randall-Sundrum scenario. Such a tensor field BABB_{AB} (whose rank-3 field strength tensor is HLMNH_{LMN}), which appears in the massless sector of a heterotic string theory, is assumed to coexist with the gravity in the bulk. The third rank field strength corresponding to the Kalb-Ramond field has a well-known geometric interpretation as the spacetime torsion. The only non-trivial classical solutions corresponding to the effective four-dimensional action are found to be self-dual or anti-selfdual Kalb-Ramond fields. This ensures that the four-dimensional effective action on the brane is parity-conserving. The massive modes for both cases, lying in the TeV range, are related to the fundamental parameters of the theory. These modes can be within the kinematic reach of forthcoming TeV scale experiments. However, the couplings of the massless as well as massive Kalb-Ramond modes with matter on the visible brane are found to be suppressed vis-a-vis that of the graviton by the warp factor, whence the conclusion is that both the massless and the massive torsion modes appear much weaker than curvature to an observer on the visible brane.Comment: 15 Pages,2 figures,Late
    • …
    corecore