604 research outputs found

    The Nuclear Reactions in Standard BBN

    Full text link
    Nowadays, the Cosmic Microwave Background (CMB) anisotropies studies accurately determine the baryon fraction omega_b, showing an overall and striking agreement with previous determinations of omega_b obtained from Big Bang Nucleosynthesis (BBN). However, a deeper comparison of BBN predictions with the determinations of the primordial light nuclides abundances shows slight tensions, motivating an effort to further improve the accuracy of theoretical predictions, as well as to better evaluate systematics in both observations and nuclear reactions measurements. We present some results of an important step towards an increasing precision of BBN predictions, namely an updated and critical review of the nuclear network, and a new protocol to perform the nuclear data regression.Comment: 4 pp.,4figs. Few typos corrected and updated refs. to match the version appearing in the proceedings of Conference ``Nuclei in the Cosmos VIII'', Vancouver, BC, Canada, 19-23 Jul 2004, published in Nucl. Phys.

    Cosmological neutrino mass detection: The best probe of neutrino lifetime

    Get PDF
    Future cosmological data may be sensitive to the effects of a finite sum of neutrino masses even as small as ~0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a cosmological detection of neutrino mass at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence on neutrino secret interactions with (quasi-)massless particles as in majoron models. On the other hand, neutrino decay may provide a way-out to explain a discrepancy <~ 0.1 eV between cosmic neutrino bounds and Lab data.Comment: 5 pages, 1 eps figure; clarifications and references added, improved discussion, conclusions unchanged. Matches version published in PR

    Model-independent dark matter annihilation bound from the diffuse gamma ray flux

    Get PDF
    An upper limit on the total annihilation cross section of dark matter (DM) has recently been derived from the observed atmospheric neutrino background. We show that comparable bounds are obtained for DM masses around the TeV scale by observations of the diffuse gamma-ray flux by EGRET, because electroweak bremsstrahlung leads to non-negligible electromagnetic branching ratios, even if DM particles only couple to neutrinos at tree level. A better mapping and the partial resolution of the diffuse gamma-ray background into astrophysical sources by the GLAST satellite will improve this bound in the near future.Comment: 4 pages revtex, 2 figures; minor changes, references added, conclusions unchanged; Matches published versio

    A robust upper limit on N_eff from BBN, circa 2011

    Full text link
    We derive here a robust bound on the effective number of neutrinos from constraints on primordial nucleosynthesis yields of deuterium and helium. In particular, our results are based on very weak assumptions on the astrophysical determination of the helium abundance, namely that the minimum effect of stellar processing is to keep constant (rather than increase, as expected) the helium content of a low-metallicity gas. Using the results of a recent analysis of extragalactic HII regions as upper limit, we find that Delta Neff<= 1 at 95 % C.L., quite independently of measurements on the baryon density from cosmic microwave background anisotropy data and of the neutron lifetime input. In our approach, we also find that primordial nucleosynthesis alone has no significant preference for an effective number of neutrinos larger than the standard value. The ~2 sigma hint sometimes reported in the literature is thus driven by CMB data alone and/or is the result of a questionable regression protocol to infer a measurement of primordial helium abundance.Comment: 5 pages, 1 table, 1 figure. Minor improvements and extensions in the analysis, clarifications and reference added, conclusions slightly strengthened. Matches version published in Phys. Lett.

    Standard and non-standard primordial neutrinos

    Get PDF
    The standard cosmological model predicts the existence of a cosmic neutrino background with a present density of about 110 cm^{-3} per flavour, which affects big-bang nucleosynthesis, cosmic microwave background anisotropies, and the evolution of large scale structures. We report on a precision calculation of the cosmic neutrino background properties including the modification introduced by neutrino oscillations. The role of a possible neutrino-antineutrino asymmetry and the impact of non-standard neutrino-electron interactions on the relic neutrinos are also briefly discussed.Comment: 4 pages, no figures. Contribution to the proceedings of SNOW 2006, Stockholm, May 2-6, 2006. Typos corrected, updated reference

    Measuring the 13-mixing angle and the CP phase with neutrino telescopes

    Full text link
    The observed excess of high-energy cosmic rays from the Galactic plane in the energy range \sim 10^18 eV may be naturally explained by neutron primaries generated in the photo-dissociation of heavy nuclei. In this scenario, neutrons with lower energy decay before reaching the Earth and produce a detectable flux in a 1 km^3 neutrino telescope. The initial flavor composition of these neutrinos, \phi(\bar\nu_e):\phi(\bar\nu_\mu):\phi(\bar\nu_\tau)=1:0:0, offers the opportunity to perform a combined \bar\nu_\mu/\bar\nu_\tau appearance and \bar\nu_e disappearance experiment. The observable ratio \phi(\bar\nu_\mu)/\phi(\bar\nu_e+\bar\nu_\tau) of fluxes arriving on Earth depends appreciably on the 13-mixing angle \theta_13 and the leptonic CP phase \delta_CP, opening thus a new experimental avenue to measure these two quantities.Comment: 4 pages, 2 eps figures. Enlarged discussion, references added. Matches version to appear in PR

    Conservative effects in spin-transfer-driven magnetization dynamics

    Full text link
    It is shown that under appropriate conditions spin-transfer-driven magnetization dynamics in a single-domain nanomagnet is conservative in nature and admits a specific integral of motion, which is reduced to the usual magnetic energy when the spin current goes to zero. The existence of this conservation law is connected to the symmetry properties of the dynamics under simultaneous inversion of magnetisation and time. When one applies an external magnetic field parallel to the spin polarization, the dynamics is transformed from conservative into dissipative. More precisely, it is demonstrated that there exists a state function such that the field induces a monotone relaxation of this function toward its minima or maxima, depending on the field orientation. These results hold in the absence of intrinsic damping effects. When intrinsic damping is included in the description, a competition arises between field-induced and damping-induced relaxations, which leads to the appearance of limit cycles, that is, of magnetization self-oscillations.Comment: 5 pages, 3 figure

    Bremsstrahlung gamma rays from light Dark Matter

    Full text link
    We discuss the often-neglected role of bremsstrahlung processes on the interstellar gas in computing indirect signatures of Dark Matter (DM) annihilation in the Galaxy, particularly for light DM candidates in the phenomenologically interesting O(10) GeV mass range. Especially from directions close to the Galactic Plane, the expected gamma-ray spectrum is altered via two effects: directly, by the photons emitted in the bremsstrahlung process on the interstellar gas by energetic electrons which are among the DM annihilation byproducts; indirectly, by the modification of the same electron spectrum, due to the additional energy loss process in the diffusion-loss equation (e.g. the resulting inverse Compton emission is altered). We quantify the importance of the bremsstrahlung emission in the GeV energy range, showing that it is the dominant component of the gamma-ray spectrum for some cases. We also find that, in regions in which bremsstrahlung dominates energy losses, the related gamma-ray emission is only moderately sensitive to possible large variations in the gas density. Still, we stress that, for computing precise spectra in the (sub-)GeV range, it is important to obtain a reliable description of the inner Galaxy gas distribution as well as to compute self-consistently the gamma emission and the solution to the diffusion-loss equation. For example, these are crucial issues to quantify and interpret meaningfully gamma-ray map `residuals' in terms of (light) DM annihilations.Comment: 17 pages, 5 figures, 1 table; references added, changed to match the published versio

    Lepton asymmetry and primordial nucleosynthesis in the era of precision cosmology

    Full text link
    We calculate and display the primordial light-element abundances as a function of a neutrino degeneracy parameter \xi common to all flavors. It is the only unknown parameter characterizing the thermal medium at the primordial nucleosynthesis epoch. The observed primordial helium abundance Y_p is the most sensitive cosmic ``leptometer.'' Adopting the conservative Y_p error analysis of Olive and Skillman implies -0.04 \alt \xi \alt 0.07 whereas the errors stated by Izotov and Thuan imply \xi=0.0245+-0.0092 (1 sigma). Improved determinations of the baryon abundance have no significant impact on this situation. A determination of Y_p that reliably distinguishes between a vanishing or nonvanishing \xi is a crucial test of the cosmological standard assumption that sphaleron effects equilibrate the cosmic lepton and baryon asymmetries.Comment: 5 pages, 2 figures; minor changes, references added, replaced to match the published version in PRD (Brief Reports
    • …
    corecore