548 research outputs found
31P NMR study of Na2CuP2O7: a S=1/2 two-dimensional Heisenberg antiferromagnetic system
The magnetic properties of Na2CuP2O7 were investigated by means of 31P
nuclear magnetic resonance (NMR), magnetic susceptibility, and heat capacity
measurements. We report the 31P NMR shift, the spin-lattice 1/T1, and spin-spin
1/T2 relaxation-rate data as a function of temperature T.
The temperature dependence of the NMR shift K(T) is well described by the
S=1/2 square lattice Heisenberg antiferromagnetic (HAF) model with an
intraplanar exchange of J/k_B \simeq 18\pm2 K and a hyperfine coupling A =
(3533\pm185) Oe/mu_B. The 31P NMR spectrum was found to broaden abruptly below
T \sim 10 K signifying some kind of transition. However, no anomaly was noticed
in the bulk susceptibility data down to 1.8 K. The heat capacity appears to
have a weak maximum around 10 K. With decrease in temperatures, the
spin-lattice relaxation rate 1/T1 decreases monotonically and appears to agree
well with the high temperature series expansion expression for a S = 1/2 2D
square lattice.Comment: 12 pages, 8 figures, submitted to J. Phys.: Cond. Ma
Experimental investigation of the origin of the cross-over temperature in the cuprates
We investigate the cross-over temperature T* as a function of doping in
(Ca_{x}La_{1-x})(Ba_{1.75-x}La_{0.25+x})Cu_3O_{y}, where the maximum Tc
(Tc^max) varies continuously by 30% between families (x) with minimal
structural changes. T* is determined by DC-susceptibility measurements. We find
that T* scales with the maximum Neel temperature TN^max of each family. This
result strongly supports a magnetic origin of T*, and indicates that three
dimensional interactions play a role in its magnitude.Comment: 4 pages, 4 figure
Magnetic and thermal properties of the S = 1/2 zig-zag spin-chain compound In2VO5
Static magnetic susceptibility \chi, ac susceptibility \chi_{ac} and specific
heat C versus temperature T measurements on polycrystalline samples of In2VO5
and \chi and C versus T measurements on the isostructural, nonmagnetic compound
In2TiO5 are reported. A Curie-Wiess fit to the \chi(T) data above 175 K for
In2VO5 indicates ferromagnetic exchange between V^{4+} (S = 1/2) moments. Below
150 K the \chi(T) data deviate from the Curie-Weiss behavior but there is no
signature of any long range magnetic order down to 1.8 K. There is a cusp at
2.8 K in the zero field cooled (ZFC) \chi(T) data measured in a magnetic field
of 100 Oe and the ZFC and field cooled (FC) data show a bifurcation below this
temperature. The frequency dependence of the \chi_{ac}(T) data indicate that
below 3 K the system is in a spin-glass state. The difference \Delta C between
the heat capacity of In2VO5 and In2TiO5 shows a broad anomaly peaked at 130 K.
The entropy upto 300 K is more than what is expected for S = 1/2 moments. The
anomaly in \Delta C and the extra entropy suggests that there may be a
structural change below 130 K in In2VO5.Comment: 6 pages, 7 figures, 1 tabl
Phosphoinositide Modulation of Heteromeric Kv1 Channels Adjusts Output of Spiral Ganglion Neurons from Hearing Mice
Spiral ganglion neurons (SGNs) relay acoustic code from cochlear hair cells to the brainstem, and their stimulation enables electrical hearing via cochlear implants. Rapid adaptation, a mechanism that preserves temporal precision, and a prominent feature of auditory neurons, is regulated via dendrotoxin-sensitive low-threshold voltage-activated (LVA) K(+) channels. Here, we investigated the molecular physiology of LVA currents in SGNs cultured from mice following the onset of hearing (postnatal days 12-21). Kv1.1- and Kv1.2-specific toxins blocked the LVA currents in a comparable manner, suggesting that both subunits contribute to functional heteromeric channels. Confocal immunofluorescence in fixed cochlear sections localized both Kv1.1 and Kv1.2 subunits to specific neuronal microdomains, including the somatic membrane, juxtaparanodes, and the first heminode, which forms the spike initiation site of the auditory nerve. The spatial distribution of Kv1 immunofluorescence appeared mutually exclusive to that of Kv3.1b subunits, which mediate high-threshold voltage-activated currents. As Kv1.2-containing channels are positively modulated by membrane phosphoinositides, we investigated the influence of phosphatidylinositol-4,5-bisphosphate (PIP2) availability on SGN electrophysiology. Reducing PIP2 production using wortmannin, or sequestration of PIP2 using a palmitoylated peptide (PIP2-PP), slowed adaptation rate in SGN populations. PIP2-PP specifically inhibited the LVA current in SGNs, an effect reduced by intracellular dialysis of a nonhydrolysable analog of PIP2. PIP2-PP also inhibited heterologously expressed Kv1.1/Kv1.2 channels, recapitulating its effect in SGNs. Collectively, the data identify Kv1.1/Kv1.2 heteromeric channels as key regulators of action potential initiation and propagation in the auditory nerve, and suggest that modulation of these channels by endogenous phosphoinositides provides local control of membrane excitability
Spin-gap behaviour in the 2-leg spin-ladder BiCu2PO6
We present magnetic suscceptibility and heat capacity data on a new S=1/2
two-leg spin ladder compound BiCu2PO6. From our susceptibility analysis, we
find that the leg coupling J1/k_B is ~ 80 K and the ratio of the rung to leg
coupling J2/J1 ~ 0.9. We present the magnetic contribution to the heat capacity
of a two-leg ladder. The spin-gap Delta/k_B =3 4 K obtained from the heat
capacity agrees very well with that obtained from the magnetic susceptibility.
Significant inter-ladder coupling is suggested from the susceptibility
analysis. The hopping integrals determined using Nth order muffin tin orbital
(NMTO) based downfolding method lead to ratios of various exchange couplings in
agreement with our experimental data. Based on our band structure analysis, we
find the inter-ladder coupling in the bc-plane J2 to be about 0.75J1 placing
the compound presumably close to the quantum critical limit.Comment: 8 pages, 5 figure
Synthesis, Structure and Properties of Tetragonal Sr2M3As2O2 (M3 = Mn3, Mn2Cu and MnZn2) Compounds Containing Alternating CuO2-Type and FeAs-Type Layers
Polycrystalline samples of Sr2Mn2CuAs2O2, Sr2Mn3As2O2, and Sr2Zn2MnAs2O2 were
synthesized. Their temperature- and applied magnetic field-dependent
structural, transport, thermal, and magnetic properties were characterized by
means of x-ray and neutron diffraction, electrical resistivity rho, heat
capacity, magnetization and magnetic susceptibility measurements. These
compounds have a body-centered-tetragonal crystal structure (space group
I4/mmm) that consists of MO2 (M = Zn and/or Mn) oxide layers similar to the
CuO2 layers in high superconducting transition temperature Tc cuprate
superconductors, and intermetallic MAs (M = Cu and/or Mn) layers similar to the
FeAs layers in high-Tc pnictides. These two types of layers alternate along the
crystallographic c-axis and are separated by Sr atoms. The site occupancies of
Mn, Cu and Zn were studied using Rietveld refinements of x-ray and neutron
powder diffraction data. The temperature dependences of rho suggest metallic
character for Sr2Mn2CuAs2O2 and semiconducting character for Sr2Mn3As2O2 and
Sr2Zn2MnAs2O2. Sr2Mn2CuAs2O2 is inferred to be a ferrimagnet with a Curie
temperature TC = 95(1) K. Remarkably, we find that the magnetic ground state
structure changes from a G-type antiferromagnetic structure in Sr2Mn3As2O2 to
an A-type ferrimagnetic structure in Sr2Mn2CuAs2O2 in which the Mn ions in each
layer are ferromagnetically aligned, but are antiferromagnetically aligned
between layers.Comment: 18 pages, 16 figures, 6 tables; submitted to Phys. Rev.
Recommended from our members
Tablet PCs in schools: Case study report: A report for Becta by the Open University
The publication provides an analysis of twelve case studies involving schools in England that were using Tablet PCs. The analysis is complemented by brief individual reports describing aspects of how each of these schools was using Tablet PCs
Ablation of neuropilin 1 from glioma-associated microglia and macrophages slows tumor progression
Gliomas are the most commonly diagnosed primary tumors of the central nervous system (CNS). Median times of survival are dismal regardless of the treatment approach, underlying the need to develop more effective therapies. Modulation of the immune system is a promising strategy as innate and adaptive immunity play important roles in cancer progression. Glioma associated microglia and macrophages (GAMs) can comprise over 30% of the cells in glioma biopsies. Gliomas secrete cytokines that suppress the anti-tumorigenic properties of GAMs, causing them to secrete factors that support the tumor's spread and growth. Neuropilin 1 (Nrp1) is a transmembrane receptor that in mice both amplifies pro-angiogenic signaling in the tumor microenvironment and affects behavior of innate immune cells. Using a Cre-lox system, we generated mice that lack expression of Nrp1 in GAMs. We demonstrate, using an in vivo orthotopic glioma model, that tumors in mice with Nrp1-deficient GAMs exhibit less vascularity, grow at a slower pace, and are populated by increased numbers of anti-tumorigenic GAMs. Moreover, glioma survival times in mice with Nrp1-deficient GAMs were significantly longer. Treating wild-type mice with a small molecule inhibitor of Nrp1's b1 domain, EG00229, which we show here is selective for Nrp1 over Nrp2, yielded an identical outcome. Nrp1-deficient or EG00229-treated wild-type microglia exhibited a shift towards anti-tumorigenicity as evident by altered inflammatory marker profiles in vivo and decreased SMAD2/3 activation when conditioned in the presence of glioma-derived factors. These results provide support for the proposal that pharmacological inhibition of Nrp1 constitutes a potential strategy for suppressing glioma progression
Analysis of and workarounds for element reversal for a finite element-based algorithm for warping triangular and tetrahedral meshes
We consider an algorithm called FEMWARP for warping triangular and
tetrahedral finite element meshes that computes the warping using the finite
element method itself. The algorithm takes as input a two- or three-dimensional
domain defined by a boundary mesh (segments in one dimension or triangles in
two dimensions) that has a volume mesh (triangles in two dimensions or
tetrahedra in three dimensions) in its interior. It also takes as input a
prescribed movement of the boundary mesh. It computes as output updated
positions of the vertices of the volume mesh. The first step of the algorithm
is to determine from the initial mesh a set of local weights for each interior
vertex that describes each interior vertex in terms of the positions of its
neighbors. These weights are computed using a finite element stiffness matrix.
After a boundary transformation is applied, a linear system of equations based
upon the weights is solved to determine the final positions of the interior
vertices. The FEMWARP algorithm has been considered in the previous literature
(e.g., in a 2001 paper by Baker). FEMWARP has been succesful in computing
deformed meshes for certain applications. However, sometimes FEMWARP reverses
elements; this is our main concern in this paper. We analyze the causes for
this undesirable behavior and propose several techniques to make the method
more robust against reversals. The most successful of the proposed methods
includes combining FEMWARP with an optimization-based untangler.Comment: Revision of earlier version of paper. Submitted for publication in
BIT Numerical Mathematics on 27 April 2010. Accepted for publication on 7
September 2010. Published online on 9 October 2010. The final publication is
available at http://www.springerlink.co
- …
