548 research outputs found

    Tablet PCs in schools: case study report

    Get PDF

    31P NMR study of Na2CuP2O7: a S=1/2 two-dimensional Heisenberg antiferromagnetic system

    Full text link
    The magnetic properties of Na2CuP2O7 were investigated by means of 31P nuclear magnetic resonance (NMR), magnetic susceptibility, and heat capacity measurements. We report the 31P NMR shift, the spin-lattice 1/T1, and spin-spin 1/T2 relaxation-rate data as a function of temperature T. The temperature dependence of the NMR shift K(T) is well described by the S=1/2 square lattice Heisenberg antiferromagnetic (HAF) model with an intraplanar exchange of J/k_B \simeq 18\pm2 K and a hyperfine coupling A = (3533\pm185) Oe/mu_B. The 31P NMR spectrum was found to broaden abruptly below T \sim 10 K signifying some kind of transition. However, no anomaly was noticed in the bulk susceptibility data down to 1.8 K. The heat capacity appears to have a weak maximum around 10 K. With decrease in temperatures, the spin-lattice relaxation rate 1/T1 decreases monotonically and appears to agree well with the high temperature series expansion expression for a S = 1/2 2D square lattice.Comment: 12 pages, 8 figures, submitted to J. Phys.: Cond. Ma

    Experimental investigation of the origin of the cross-over temperature in the cuprates

    Full text link
    We investigate the cross-over temperature T* as a function of doping in (Ca_{x}La_{1-x})(Ba_{1.75-x}La_{0.25+x})Cu_3O_{y}, where the maximum Tc (Tc^max) varies continuously by 30% between families (x) with minimal structural changes. T* is determined by DC-susceptibility measurements. We find that T* scales with the maximum Neel temperature TN^max of each family. This result strongly supports a magnetic origin of T*, and indicates that three dimensional interactions play a role in its magnitude.Comment: 4 pages, 4 figure

    Magnetic and thermal properties of the S = 1/2 zig-zag spin-chain compound In2VO5

    Full text link
    Static magnetic susceptibility \chi, ac susceptibility \chi_{ac} and specific heat C versus temperature T measurements on polycrystalline samples of In2VO5 and \chi and C versus T measurements on the isostructural, nonmagnetic compound In2TiO5 are reported. A Curie-Wiess fit to the \chi(T) data above 175 K for In2VO5 indicates ferromagnetic exchange between V^{4+} (S = 1/2) moments. Below 150 K the \chi(T) data deviate from the Curie-Weiss behavior but there is no signature of any long range magnetic order down to 1.8 K. There is a cusp at 2.8 K in the zero field cooled (ZFC) \chi(T) data measured in a magnetic field of 100 Oe and the ZFC and field cooled (FC) data show a bifurcation below this temperature. The frequency dependence of the \chi_{ac}(T) data indicate that below 3 K the system is in a spin-glass state. The difference \Delta C between the heat capacity of In2VO5 and In2TiO5 shows a broad anomaly peaked at 130 K. The entropy upto 300 K is more than what is expected for S = 1/2 moments. The anomaly in \Delta C and the extra entropy suggests that there may be a structural change below 130 K in In2VO5.Comment: 6 pages, 7 figures, 1 tabl

    Phosphoinositide Modulation of Heteromeric Kv1 Channels Adjusts Output of Spiral Ganglion Neurons from Hearing Mice

    Get PDF
    Spiral ganglion neurons (SGNs) relay acoustic code from cochlear hair cells to the brainstem, and their stimulation enables electrical hearing via cochlear implants. Rapid adaptation, a mechanism that preserves temporal precision, and a prominent feature of auditory neurons, is regulated via dendrotoxin-sensitive low-threshold voltage-activated (LVA) K(+) channels. Here, we investigated the molecular physiology of LVA currents in SGNs cultured from mice following the onset of hearing (postnatal days 12-21). Kv1.1- and Kv1.2-specific toxins blocked the LVA currents in a comparable manner, suggesting that both subunits contribute to functional heteromeric channels. Confocal immunofluorescence in fixed cochlear sections localized both Kv1.1 and Kv1.2 subunits to specific neuronal microdomains, including the somatic membrane, juxtaparanodes, and the first heminode, which forms the spike initiation site of the auditory nerve. The spatial distribution of Kv1 immunofluorescence appeared mutually exclusive to that of Kv3.1b subunits, which mediate high-threshold voltage-activated currents. As Kv1.2-containing channels are positively modulated by membrane phosphoinositides, we investigated the influence of phosphatidylinositol-4,5-bisphosphate (PIP2) availability on SGN electrophysiology. Reducing PIP2 production using wortmannin, or sequestration of PIP2 using a palmitoylated peptide (PIP2-PP), slowed adaptation rate in SGN populations. PIP2-PP specifically inhibited the LVA current in SGNs, an effect reduced by intracellular dialysis of a nonhydrolysable analog of PIP2. PIP2-PP also inhibited heterologously expressed Kv1.1/Kv1.2 channels, recapitulating its effect in SGNs. Collectively, the data identify Kv1.1/Kv1.2 heteromeric channels as key regulators of action potential initiation and propagation in the auditory nerve, and suggest that modulation of these channels by endogenous phosphoinositides provides local control of membrane excitability

    Spin-gap behaviour in the 2-leg spin-ladder BiCu2PO6

    Full text link
    We present magnetic suscceptibility and heat capacity data on a new S=1/2 two-leg spin ladder compound BiCu2PO6. From our susceptibility analysis, we find that the leg coupling J1/k_B is ~ 80 K and the ratio of the rung to leg coupling J2/J1 ~ 0.9. We present the magnetic contribution to the heat capacity of a two-leg ladder. The spin-gap Delta/k_B =3 4 K obtained from the heat capacity agrees very well with that obtained from the magnetic susceptibility. Significant inter-ladder coupling is suggested from the susceptibility analysis. The hopping integrals determined using Nth order muffin tin orbital (NMTO) based downfolding method lead to ratios of various exchange couplings in agreement with our experimental data. Based on our band structure analysis, we find the inter-ladder coupling in the bc-plane J2 to be about 0.75J1 placing the compound presumably close to the quantum critical limit.Comment: 8 pages, 5 figure

    Synthesis, Structure and Properties of Tetragonal Sr2M3As2O2 (M3 = Mn3, Mn2Cu and MnZn2) Compounds Containing Alternating CuO2-Type and FeAs-Type Layers

    Full text link
    Polycrystalline samples of Sr2Mn2CuAs2O2, Sr2Mn3As2O2, and Sr2Zn2MnAs2O2 were synthesized. Their temperature- and applied magnetic field-dependent structural, transport, thermal, and magnetic properties were characterized by means of x-ray and neutron diffraction, electrical resistivity rho, heat capacity, magnetization and magnetic susceptibility measurements. These compounds have a body-centered-tetragonal crystal structure (space group I4/mmm) that consists of MO2 (M = Zn and/or Mn) oxide layers similar to the CuO2 layers in high superconducting transition temperature Tc cuprate superconductors, and intermetallic MAs (M = Cu and/or Mn) layers similar to the FeAs layers in high-Tc pnictides. These two types of layers alternate along the crystallographic c-axis and are separated by Sr atoms. The site occupancies of Mn, Cu and Zn were studied using Rietveld refinements of x-ray and neutron powder diffraction data. The temperature dependences of rho suggest metallic character for Sr2Mn2CuAs2O2 and semiconducting character for Sr2Mn3As2O2 and Sr2Zn2MnAs2O2. Sr2Mn2CuAs2O2 is inferred to be a ferrimagnet with a Curie temperature TC = 95(1) K. Remarkably, we find that the magnetic ground state structure changes from a G-type antiferromagnetic structure in Sr2Mn3As2O2 to an A-type ferrimagnetic structure in Sr2Mn2CuAs2O2 in which the Mn ions in each layer are ferromagnetically aligned, but are antiferromagnetically aligned between layers.Comment: 18 pages, 16 figures, 6 tables; submitted to Phys. Rev.

    Ablation of neuropilin 1 from glioma-associated microglia and macrophages slows tumor progression

    Get PDF
    Gliomas are the most commonly diagnosed primary tumors of the central nervous system (CNS). Median times of survival are dismal regardless of the treatment approach, underlying the need to develop more effective therapies. Modulation of the immune system is a promising strategy as innate and adaptive immunity play important roles in cancer progression. Glioma associated microglia and macrophages (GAMs) can comprise over 30% of the cells in glioma biopsies. Gliomas secrete cytokines that suppress the anti-tumorigenic properties of GAMs, causing them to secrete factors that support the tumor's spread and growth. Neuropilin 1 (Nrp1) is a transmembrane receptor that in mice both amplifies pro-angiogenic signaling in the tumor microenvironment and affects behavior of innate immune cells. Using a Cre-lox system, we generated mice that lack expression of Nrp1 in GAMs. We demonstrate, using an in vivo orthotopic glioma model, that tumors in mice with Nrp1-deficient GAMs exhibit less vascularity, grow at a slower pace, and are populated by increased numbers of anti-tumorigenic GAMs. Moreover, glioma survival times in mice with Nrp1-deficient GAMs were significantly longer. Treating wild-type mice with a small molecule inhibitor of Nrp1's b1 domain, EG00229, which we show here is selective for Nrp1 over Nrp2, yielded an identical outcome. Nrp1-deficient or EG00229-treated wild-type microglia exhibited a shift towards anti-tumorigenicity as evident by altered inflammatory marker profiles in vivo and decreased SMAD2/3 activation when conditioned in the presence of glioma-derived factors. These results provide support for the proposal that pharmacological inhibition of Nrp1 constitutes a potential strategy for suppressing glioma progression

    Analysis of and workarounds for element reversal for a finite element-based algorithm for warping triangular and tetrahedral meshes

    Full text link
    We consider an algorithm called FEMWARP for warping triangular and tetrahedral finite element meshes that computes the warping using the finite element method itself. The algorithm takes as input a two- or three-dimensional domain defined by a boundary mesh (segments in one dimension or triangles in two dimensions) that has a volume mesh (triangles in two dimensions or tetrahedra in three dimensions) in its interior. It also takes as input a prescribed movement of the boundary mesh. It computes as output updated positions of the vertices of the volume mesh. The first step of the algorithm is to determine from the initial mesh a set of local weights for each interior vertex that describes each interior vertex in terms of the positions of its neighbors. These weights are computed using a finite element stiffness matrix. After a boundary transformation is applied, a linear system of equations based upon the weights is solved to determine the final positions of the interior vertices. The FEMWARP algorithm has been considered in the previous literature (e.g., in a 2001 paper by Baker). FEMWARP has been succesful in computing deformed meshes for certain applications. However, sometimes FEMWARP reverses elements; this is our main concern in this paper. We analyze the causes for this undesirable behavior and propose several techniques to make the method more robust against reversals. The most successful of the proposed methods includes combining FEMWARP with an optimization-based untangler.Comment: Revision of earlier version of paper. Submitted for publication in BIT Numerical Mathematics on 27 April 2010. Accepted for publication on 7 September 2010. Published online on 9 October 2010. The final publication is available at http://www.springerlink.co
    corecore