401 research outputs found

    A Study of the LEP and SLD Measurements of AbA_b

    Get PDF
    A systematic study is made of the data dependence of the parameter AbA_{\rm{b}}, that, since 1995, has shown a deviation from the Standard Model prediction of between 2.4 and 3.1 standard deviations. Issues addressed include: the effect of particular measurements, values found by individual experiments, LEP/SLD comparison, and the treatment of systematic errors. The effect, currently at the 2.4σ\sigma level, is found to vary in the range from 1.7σ\sigma to 2.9σ\sigma by excluding marginal or particularly sensitive data. Since essentially the full LEP and SLD Z decay data sets are now analysed the meaning of the deviation, (new physics, or marginal statistical fluctuation) is unlikely to be given by the present generation of colliders.Comment: 15 pages 7 figures 7 table

    Contextual Realization of the Universal Quantum Cloning Machine and of the Universal-NOT gate by Quantum Injected Optical Parametric Amplification

    Full text link
    A simultaneous, contextual experimental demonstration of the two processes of cloning an input qubit and of flipping it into the orthogonal qubit is reported. The adopted experimental apparatus, a Quantum-Injected Optical Parametric Amplifier (QIOPA) is transformed simultaneously into a Universal Optimal Quantum Cloning Machine (UOQCM) and into a Universal NOT quantum-information gate. The two processes, indeed forbidden in their exact form for fundamental quantum limitations, will be found to be universal and optimal, i.e. the measured fidelity of both processes F<1 will be found close to the limit values evaluated by quantum theory. A contextual theoretical and experimental investigation of these processes, which may represent the basic difference between the classical and the quantum worlds, can reveal in a unifying manner the detailed structure of quantum information. It may also enlighten the yet little explored interconnections of fundamental axiomatic properties within the deep structure of quantum mechanics. PACS numbers: 03.67.-a, 03.65.Ta, 03.65.UdComment: 27 pages, 7 figure

    Hyperbolic Kac-Moody superalgebras

    Full text link
    We present a classification of the hyperbolic Kac-Moody (HKM) superalgebras. The HKM superalgebras of rank larger or equal than 3 are finite in number (213) and limited in rank (6). The Dynkin-Kac diagrams and the corresponding simple root systems are determined. We also discuss a class of singular sub(super)algebras obtained by a folding procedure

    Experimental reversion of the optimal quantum cloning and flipping processes

    Full text link
    The quantum cloner machine maps an unknown arbitrary input qubit into two optimal clones and one optimal flipped qubit. By combining linear and non-linear optical methods we experimentally implement a scheme that, after the cloning transformation, restores the original input qubit in one of the output channels, by using local measurements, classical communication and feedforward. This significant teleportation-like method demonstrates how the information is preserved during the cloning process. The realization of the reversion process is expected to find useful applications in the field of modern multi-partite quantum cryptography.Comment: 10 pages, 3 figure

    Anomalous resilient to decoherence macroscopic quantum superpositions generated by universally covariant optimal quantum cloning

    Full text link
    We show that the quantum states generated by universal optimal quantum cloning of a single photon represent an universal set of quantum superpositions resilient to decoherence. We adopt Bures distance as a tool to investigate the persistence ofquantum coherence of these quantum states. According to this analysis, the process of universal cloning realizes a class of quantum superpositions that exhibits a covariance property in lossy configuration over the complete set of polarization states in the Bloch sphere.Comment: 8 pages, 6 figure

    General rules for bosonic bunching in multimode interferometers

    Full text link
    We perform a comprehensive set of experiments that characterize bosonic bunching of up to 3 photons in interferometers of up to 16 modes. Our experiments verify two rules that govern bosonic bunching. The first rule, obtained recently in [1,2], predicts the average behavior of the bunching probability and is known as the bosonic birthday paradox. The second rule is new, and establishes a n!-factor quantum enhancement for the probability that all n bosons bunch in a single output mode, with respect to the case of distinguishable bosons. Besides its fundamental importance in phenomena such as Bose-Einstein condensation, bosonic bunching can be exploited in applications such as linear optical quantum computing and quantum-enhanced metrology.Comment: 6 pages, 4 figures, and supplementary material (4 pages, 1 figure

    Delayed - Choice Entanglement - Swapping with Vacuum-One Photon Quantum States

    Full text link
    We report the experimental realization of a recently discovered quantum information protocol by Asher Peres implying an apparent non-local quantum mechanical retrodiction effect. The demonstration is carried out by applying a novel quantum optical method by which each singlet entangled state is physically implemented by a two-dimensional subspace of Fock states of a mode of the electromagnetic field, specifically the space spanned by the vacuum and the one photon state, along lines suggested recently by E. Knill et al., Nature 409, 46 (2001) and by M. Duan et al., Nature 414, 413 (2001). The successful implementation of the new technique is expected to play an important role in modern quantum information and communication and in EPR quantum non-locality studies

    Optimal quantum cloning of orbital angular momentum photon qubits via Hong-Ou-Mandel coalescence

    Full text link
    The orbital angular momentum (OAM) of light, associated with a helical structure of the wavefunction, has a great potential for quantum photonics, as it allows attaching a higher dimensional quantum space to each photon. Hitherto, however, the use of OAM has been hindered by its difficult manipulation. Here, exploiting the recently demonstrated spin-OAM information transfer tools, we report the first observation of the Hong-Ou-Mandel coalescence of two incoming photons having nonzero OAM into the same outgoing mode of a beam-splitter. The coalescence can be switched on and off by varying the input OAM state of the photons. Such effect has been then exploited to carry out the 1 \rightarrow 2 universal optimal quantum cloning of OAM-encoded qubits, using the symmetrization technique already developed for polarization. These results are finally shown to be scalable to quantum spaces of arbitrary dimension, even combining different degrees of freedom of the photons.Comment: 5 pages, 3 figure
    corecore