375 research outputs found
Matter-Wave Solitons in an F=1 Spinor Bose-Einstein Condensate
Following our previous work [J. Ieda, T. Miyakawa, M. Wadati,
cond-mat/0404569] on a novel integrable model describing soliton dynamics of an
F=1 spinor Bose--Einstein condensate, we discuss in detail the properties of
the multi-component system with spin-exchange interactions. The exact multiple
bright soliton solutions are obtained for the system where the mean-field
interaction is attractive (c_0 < 0) and the spin-exchange interaction is
ferromagnetic (c_2 < 0). A complete classification of the one-soliton solution
with respect to the spin states and an explicit formula of the two-soliton
solution are presented. For solitons in polar state, there exists a variety of
different shaped solutions including twin peaks. We show that a "singlet pair"
density can be used to distinguish those energetically degenerate solitons. We
also analyze collisional effects between solitons in the same or different spin
state(s) by computing the asymptotic forms of their initial and final states.
The result reveals that it is possible to manipulate the spin dynamics by
controlling the parameters of colliding solitons.Comment: 12 pages, 9 figures, to appear in J. Phys. Soc. Jpn. Vol.73 No.11
(2004
Conserving Gapless Mean-Field Theory of a Multi-Component Bose-Einstein Condensate
We develop a mean-field theory for Bose-Einstein condensation of spin-1 atoms
with internal degrees of freedom. It is applicable to nonuniform systems at
finite temperatures with a plausible feature of satisfying the Hugenholtz-Pines
theorem and various conservation laws simultaneously. Using it, we clarify
thermodynamic properties and the excitation spectra of a uniform gas. The
condensate is confirmed to remain in the same internal state from T=0 up to
for both antiferromagnetic and ferromagnetic interactions. The
excitation spectra of the antiferromagnetic (ferromagnetic) interaction are
found to have only a single gapless mode, contrary to the prediction of the
Bogoliubov theory where three (two) of them are gapless. We present a detailed
discussion on those single-particle excitations in connection with the
collective excitations.Comment: 8 pages, 7 figures Minor errors remove
Spin-Nematic Squeezed Vacuum in a Quantum Gas
Using squeezed states it is possible to surpass the standard quantum limit of
measurement uncertainty by reducing the measurement uncertainty of one property
at the expense of another complementary property. Squeezed states were first
demonstrated in optical fields and later with ensembles of pseudo spin-1/2
atoms using non-linear atom-light interactions. Recently, collisional
interactions in ultracold atomic gases have been used to generate a large
degree of quadrature spin squeezing in two-component Bose condensates. For
pseudo spin-1/2 systems, the complementary properties are the different
components of the total spin vector , which fully characterize the state on
an SU(2) Bloch sphere. Here, we measure squeezing in a spin-1 Bose condensate,
an SU(3) system, which requires measurement of the rank-2 nematic or quadrupole
tensor as well to fully characterize the state. Following a quench
through a nematic to ferromagnetic quantum phase transition, squeezing is
observed in the variance of the quadratures up to -8.3(-0.7 +0.6) dB
(-10.3(-0.9 +0.7) dB corrected for detection noise) below the standard quantum
limit. This spin-nematic squeezing is observed for negligible occupation of the
squeezed modes and is analogous to optical two-mode vacuum squeezing. This work
has potential applications to continuous variable quantum information and
quantum-enhanced magnetometry
Multicomponent Bright Solitons in F = 2 Spinor Bose-Einstein Condensates
We study soliton solutions for the Gross--Pitaevskii equation of the spinor
Bose--Einstein condensates with hyperfine spin F=2 in one-dimension. Analyses
are made in two ways: by assuming single-mode amplitudes and by generalizing
Hirota's direct method for multi-components. We obtain one-solitons of
single-peak type in the ferromagnetic, polar and cyclic states, respectively.
Moreover, twin-peak type solitons both in the ferromagnetic and the polar state
are found.Comment: 15 pages, 8 figure
Coherent multi-flavour spin dynamics in a fermionic quantum gas
Microscopic spin interaction processes are fundamental for global static and
dynamical magnetic properties of many-body systems. Quantum gases as pure and
well isolated systems offer intriguing possibilities to study basic magnetic
processes including non-equilibrium dynamics. Here, we report on the
realization of a well-controlled fermionic spinor gas in an optical lattice
with tunable effective spin ranging from 1/2 to 9/2. We observe long-lived
intrinsic spin oscillations and investigate the transition from two-body to
many-body dynamics. The latter results in a spin-interaction driven melting of
a band insulator. Via an external magnetic field we control the system's
dimensionality and tune the spin oscillations in and out of resonance. Our
results open new routes to study quantum magnetism of fermionic particles
beyond conventional spin 1/2 systems.Comment: 9 pages, 5 figure
Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices
Orbital physics plays a significant role for a vast number of important
phenomena in complex condensed matter systems such as high-T
superconductivity and unconventional magnetism. In contrast, phenomena in
superfluids -- especially in ultracold quantum gases -- are commonly well
described by the lowest orbital and a real order parameter. Here, we report on
the observation of a novel multi-orbital superfluid phase with a {\it complex}
order parameter in binary spin mixtures. In this unconventional superfluid, the
local phase angle of the complex order parameter is continuously twisted
between neighboring lattice sites. The nature of this twisted superfluid
quantum phase is an interaction-induced admixture of the p-orbital favored by
the graphene-like band structure of the hexagonal optical lattice used in the
experiment. We observe a second-order quantum phase transition between the
normal superfluid (NSF) and the twisted superfluid phase (TSF) which is
accompanied by a symmetry breaking in momentum space. The experimental results
are consistent with calculated phase diagrams and reveal fundamentally new
aspects of orbital superfluidity in quantum gas mixtures. Our studies might
bridge the gap between conventional superfluidity and complex phenomena of
orbital physics.Comment: 5 pages, 4 figure
Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose condensate
A central goal in condensed matter and modern atomic physics is the
exploration of many-body quantum phases and the universal characteristics of
quantum phase transitions in so far as they differ from those established for
thermal phase transitions. Compared with condensed-matter systems, atomic gases
are more precisely constructed and also provide the unique opportunity to
explore quantum dynamics far from equilibrium. Here we identify a second-order
quantum phase transition in a gaseous spinor Bose-Einstein condensate, a
quantum fluid in which superfluidity and magnetism, both associated with
symmetry breaking, are simultaneously realized. Rb spinor condensates
were rapidly quenched across this transition to a ferromagnetic state and
probed using in-situ magnetization imaging to observe spontaneous symmetry
breaking through the formation of spin textures, ferromagnetic domains and
domain walls. The observation of topological defects produced by this symmetry
breaking, identified as polar-core spin-vortices containing non-zero spin
current but no net mass current, represents the first phase-sensitive in-situ
detection of vortices in a gaseous superfluid.Comment: 6 pages, 4 figure
Physics with Coherent Matter Waves
This review discusses progress in the new field of coherent matter waves, in
particular with respect to Bose-Einstein condensates. We give a short
introduction to Bose-Einstein condensation and the theoretical description of
the condensate wavefunction. We concentrate on the coherence properties of this
new type of matter wave as a basis for fundamental physics and applications.
The main part of this review treats various measurements and concepts in the
physics with coherent matter waves. In particular we present phase manipulation
methods, atom lasers, nonlinear atom optics, optical elements, interferometry
and physics in optical lattices. We give an overview of the state of the art in
the respective fields and discuss achievements and challenges for the future
- …
