405 research outputs found

    Zero-temperature Phase Diagram For Strongly-Correlated Nanochains

    Full text link
    Recently there has been a resurgence of intense experimental and theoretical interest on the Kondo physics of nanoscopic and mesoscopic systems due to the possibility of making experiments in extremely small samples. We have carried out exact diagonalization calculations to study the effect of the energy spacing Δ\Delta of the conduction band on the ground-state properties of a dense Anderson model nanochain. The calculations reveal for the first time that the energy spacing tunes the interplay between the Kondo and RKKY interactions, giving rise to a zero-temperature Δ\Delta versus hybridization phase diagram with regions of prevailing Kondo or RKKY correlations, separated by a {\it free spins} regime. This interplay may be relevant to experimental realizations of small rings or quantum dots with tunable magnetic properties.Comment: 8 pages, 3 figures. J. Appl. Phys. (in press

    Superconductivity and Antiferromagnetism: Hybridization Impurities in a Two-Band Spin-Gapped Electron System

    Full text link
    We present the exact solution of a one-dimensional model of a spin-gapped correlated electron system with hybridization impurities exhibiting both magnetic and mixed-valence properties. The host supports superconducting fluctuations, with a spin gap. The localized electrons create a band of antiferromagnetic spin excitations inside the gap for concentrations x of the impurities below some critical value x_c. When x = x_c the spin gap closes and a ferrimagnetic phase appears. This is the first example of an exactly solvable model with coexisting superconducting and antiferromagnetic fluctuations which in addition supports a quantum phase transition to a (compensated) ferrimagnetic phase. We discuss the possible relevance of our results for experimental systems, in particular the U-based heavy-fermion materials.Comment: 4 page

    Exact calculation of thermodynamical quantities of the integrable t-J model

    Full text link
    The specific heat and the compressibility for the integrable t-J model are calculated showing Luttinger liquid behavior for low temperatures. A Trotter-Suzuki mapping and the quantum transfer matrix approach are utilized. Using an algebraic Bethe ansatz this method permits the exact calculation of the free energy and related quantities. A set of just two non-linear integral equations determining these quantities is studied for various particle densities and temperatures. The structure of the specific heat is discussed in terms of the elementary charge as well as spin excitations.Comment: 4 pages, 5 Postscript figures, uses epsf.sty and revtex, tar'ed, gzip'ed and uuencode

    From Jeff=1/2 insulator to p-wave superconductor in single-crystal Sr2Ir1-xRuxO4 (0 < x< 1)

    Get PDF
    Sr2IrO4 is a magnetic insulator assisted by strong spin-orbit coupling (SOC) whereas the Sr2RuO4 is a p-wave superconductor. The contrasting ground states have been shown to result from the critical role of the strong SOC in the iridate. Our investigation of structural, transport, and magnetic properties reveals that substituting 4d Ru4+ (4d4) ions for 5d Ir4+(5d5) ions in Sr2IrO4 directly adds holes to the t2g bands, reduces the SOC and thus rebalances the competing energies in single-crystal Sr2Ir1-xRuxO4. A profound effect of Ru doping driving a rich phase diagram is a structural phase transition from a distorted I41/acd to a more ideal I4/mmm tetragonal structure near x=0.50 that accompanies a phase transition from an antiferromagnetic-insulating state to a paramagnetic-metal state. We also make a comparison drawn with Rh doped Sr2IrO4, highlighting important similarities and differences.Comment: 18 pages,7 figure

    Magneto-electric effect in NdCrTiO5

    Full text link
    We have measured the dielectric constant and the pyroelectric current of orthorhombic (space group PbamPbam) NdCrTiO5_5 polycrystalline samples. The dielectric constant and the pyroelectric current show features associated with ferroelectric transitions at the antiferromagnetic transition temperature (TNT_{\text{N}} = 21 K). The effect of magnetic fields is to enhance the features almost linearly up to the maximum measured field (7 T) with a spontaneous polarization value of 3.5μ\sim 3.5 \muC/m2^2. Two possible scenarios, the linear magnetoelectric effect and multiferroicity (antiferromagnetism + ferroelectricity), are discussed as possible explanations for the observations.Comment: 7 pages, 6 figure

    Solution of the Two-Channel Anderson Impurity Model - Implications for the Heavy Fermion UBe13_{13} -

    Full text link
    We solve the two-channel Anderson impurity model using the Bethe-Ansatz. We determine the ground state and derive the thermodynamics, obtaining the impurity entropy and specific heat over the full range of temperature. We show that the low temperature physics is given by a line of fixed points decribing a two-channel non Fermi liquid behavior in the integral valence regime associated with moment formation as well as in the mixed valence regime where no moment forms. We discuss relevance for the theory of UBe13_{13}.Comment: 4 pages, 2 figures, (to be published in PRL

    Non-Fermi-liquid behavior in nearly ferromagnetic metallic SrIrO3 single crystals

    Full text link
    We report transport and thermodynamic properties of single-crystal SrIrO3 as a function of temperature T and applied magnetic field H. We find that SrIrO3 is a non-Fermi-liquid metal near a ferromagnetic instability, as characterized by the following properties: (1) small ordered moment but no evidence for long-range order down to 1.7 K; (2) strongly enhanced magnetic susceptibility that diverges as T or T1/2 at low temperatures, depending on the applied field; (3) heat capacity C(T,H) ~ -Tlog T that is readily amplified by low applied fields; (4) a strikingly large Wilson ratio at T< 4K; and (5) a T3/2-dependence of electrical resistivity over the range 1.7 < T < 120 K. A phase diagram based on the data implies SrIrO3 is a rare example of a stoichiometric oxide compound that exhibits non-Fermi-liquid behavior near a quantum critical point (T = 0 and H = 0.23 T)
    corecore