516 research outputs found

    From Jeff=1/2 insulator to p-wave superconductor in single-crystal Sr2Ir1-xRuxO4 (0 < x< 1)

    Get PDF
    Sr2IrO4 is a magnetic insulator assisted by strong spin-orbit coupling (SOC) whereas the Sr2RuO4 is a p-wave superconductor. The contrasting ground states have been shown to result from the critical role of the strong SOC in the iridate. Our investigation of structural, transport, and magnetic properties reveals that substituting 4d Ru4+ (4d4) ions for 5d Ir4+(5d5) ions in Sr2IrO4 directly adds holes to the t2g bands, reduces the SOC and thus rebalances the competing energies in single-crystal Sr2Ir1-xRuxO4. A profound effect of Ru doping driving a rich phase diagram is a structural phase transition from a distorted I41/acd to a more ideal I4/mmm tetragonal structure near x=0.50 that accompanies a phase transition from an antiferromagnetic-insulating state to a paramagnetic-metal state. We also make a comparison drawn with Rh doped Sr2IrO4, highlighting important similarities and differences.Comment: 18 pages,7 figure

    Magneto-electric effect in NdCrTiO5

    Full text link
    We have measured the dielectric constant and the pyroelectric current of orthorhombic (space group PbamPbam) NdCrTiO5_5 polycrystalline samples. The dielectric constant and the pyroelectric current show features associated with ferroelectric transitions at the antiferromagnetic transition temperature (TNT_{\text{N}} = 21 K). The effect of magnetic fields is to enhance the features almost linearly up to the maximum measured field (7 T) with a spontaneous polarization value of 3.5μ\sim 3.5 \muC/m2^2. Two possible scenarios, the linear magnetoelectric effect and multiferroicity (antiferromagnetism + ferroelectricity), are discussed as possible explanations for the observations.Comment: 7 pages, 6 figure

    Solution of the Two-Channel Anderson Impurity Model - Implications for the Heavy Fermion UBe13_{13} -

    Full text link
    We solve the two-channel Anderson impurity model using the Bethe-Ansatz. We determine the ground state and derive the thermodynamics, obtaining the impurity entropy and specific heat over the full range of temperature. We show that the low temperature physics is given by a line of fixed points decribing a two-channel non Fermi liquid behavior in the integral valence regime associated with moment formation as well as in the mixed valence regime where no moment forms. We discuss relevance for the theory of UBe13_{13}.Comment: 4 pages, 2 figures, (to be published in PRL

    Magnetic transitions and magnetodielectric effect in the antiferromagnet SrNdFeO4_4

    Full text link
    We investigated the magnetic phase diagram of single crystals of SrNdFeO4_{4} by measuring the magnetic properties, the specific heat and the dielectric permittivity. The system has two magnetically active ions, Fe3+^{3+} and Nd3+^{3+}. The Fe3+^{3+} spins are antiferromagnetically ordered below 360 K with the moments lying in the ab-plane, and undergo a reorientation transition at about 35-37 K to an antiferromagnetic order with the moments along the c-axis. A short-range, antiferromagnetic ordering of Nd3+^{3+} along the c-axis was attributed to the reorientation of Fe3+^{3+} followed by a long-range ordering at lower temperature [S. Oyama {\it et al.} J. Phys.: Condens. Matter. {\bf 16}, 1823 (2004)]. At low temperatures and magnetic fields above 8 T, the Nd3+^{3+} moments are completely spin-polarized. The dielectric permittivity also shows anomalies associated with spin configuration changes, indicating that this compound has considerable coupling between spin and lattice. A possible magnetic structure is proposed to explain the results.Comment: 8 pages, 10 figures, submitted to PR

    Lattice-Driven Magnetoresistivity and Metal-Insulator Transition in Single-Layered Iridates

    Full text link
    Sr2IrO4 exhibits a novel insulating state driven by spin-orbit interactions. We report two novel phenomena, namely a large magnetoresistivity in Sr2IrO4 that is extremely sensitive to the orientation of magnetic field but exhibits no apparent correlation with the magnetization, and a robust metallic state that is induced by dilute electron (La3+) or hole (K+) doping for Sr2+ ions in Sr2IrO4. Our structural, transport and magnetic data reveal that a strong spin-orbit interaction alters the balance between the competing energies so profoundly that (1) the spin degree of freedom alone is no longer a dominant force; (2) underlying transport properties delicately hinge on the Ir-O-Ir bond angle via a strong magnetoelastic coupling; and (3) a highly insulating state in Sr2IrO4 is proximate to a metallic state, and the transition is governed by lattice distortions. This work suggests that a novel class of lattice-driven electronic materials can be developed for applications.Comment: 4 figure

    Superconductivity and Antiferromagnetism: Hybridization Impurities in a Two-Band Spin-Gapped Electron System

    Full text link
    We present the exact solution of a one-dimensional model of a spin-gapped correlated electron system with hybridization impurities exhibiting both magnetic and mixed-valence properties. The host supports superconducting fluctuations, with a spin gap. The localized electrons create a band of antiferromagnetic spin excitations inside the gap for concentrations x of the impurities below some critical value x_c. When x = x_c the spin gap closes and a ferrimagnetic phase appears. This is the first example of an exactly solvable model with coexisting superconducting and antiferromagnetic fluctuations which in addition supports a quantum phase transition to a (compensated) ferrimagnetic phase. We discuss the possible relevance of our results for experimental systems, in particular the U-based heavy-fermion materials.Comment: 4 page

    Simultaneous Metal-Insulator and Antiferromagnetic Transitions in Orthorhombic Perovskite Iridate Sr0.94Ir0.78O2.68 Single Crystals

    Get PDF
    The orthorhombic perovskite SrIrO3 is a semimetal, an intriguing exception in iridates where the strong spin-orbit interaction coupled with electron correlations tends to impose a novel insulating state. We report results of our investigation of bulk single-crystal Sr0.94Ir0.78O2.68 or Ir-deficient, orthorhombic perovskite SrIrO3. It retains the same crystal structure as stoichiometric SrIrO3 but exhibits a sharp, simultaneous antiferromagnetic (AFM) and metal-insulator (MI) transition at 185 K. Above it, the basal-plane resistivity features an extended regime of almost linear-temperature dependence up to 800 K but the strong electronic anisotropy renders an insulating behavior in the out-of-plane resistivity. The Hall resistivity undergoes an abrupt sign change and grows below 40 K, which along with the Sommerfeld constant of 20 mJ/mole K2 suggests a multiband effect. All results including our first-principles calculations underscore a delicacy of the metallic state in SrIrO3 that is in close proximity to an AFM insulating state. The contrasting ground states in isostructural Sr0.94Ir0.78O2.68 and SrIrO3 illustrate a critical role of even slight lattice distortions in rebalancing the ground state in the iridates. Finally, the observed simultaneous AFM and MI transitions reveal a direct correlation between the magnetic transition and formation of a charge gap in the iridate, which is conspicuously absent in Sr2IrO4.Comment: 5 figure

    Zero-temperature Phase Diagram For Strongly-Correlated Nanochains

    Full text link
    Recently there has been a resurgence of intense experimental and theoretical interest on the Kondo physics of nanoscopic and mesoscopic systems due to the possibility of making experiments in extremely small samples. We have carried out exact diagonalization calculations to study the effect of the energy spacing Δ\Delta of the conduction band on the ground-state properties of a dense Anderson model nanochain. The calculations reveal for the first time that the energy spacing tunes the interplay between the Kondo and RKKY interactions, giving rise to a zero-temperature Δ\Delta versus hybridization phase diagram with regions of prevailing Kondo or RKKY correlations, separated by a {\it free spins} regime. This interplay may be relevant to experimental realizations of small rings or quantum dots with tunable magnetic properties.Comment: 8 pages, 3 figures. J. Appl. Phys. (in press

    CeCu_2Ge_2: Challenging our Understanding of Quantum Criticality

    Full text link
    Here, we unveil evidence for a quantum phase-transition in CeCu_2Ge_2 which displays both an incommensurate spin-density wave (SDW) ground-state, and a strong renormalization of the quasiparticle effective masses (mu) due to the Kondo-effect. For all angles theta between an external magnetic field (H) and the crystallographic c-axis, the application of H leads to the suppression of the SDW-state through a 2^nd-order phase-transition at a theta-dependent critical-field H_p(theta) leading to the observation of small Fermi surfaces (FSs) in the paramagnetic (PM) state. For H || c-axis, these FSs are characterized by light mu's pointing also to the suppression of the Kondo-effect at H_p with surprisingly, no experimental evidence for quantum-criticality (QC). But as HH is rotated towards the a-axis, these mu's increase considerably becoming undetectable for \theta > 56^0 between H and the c-axis. Around H_p^a~ 30 T the resistivity becomes proportional T which, coupled to the divergence of mu, indicates the existence of a field-induced QC-point at H_p^a(T=0 K). This observation, suggesting FS hot-spots associated with the SDW nesting-vector, is at odds with current QC scenarios for which the continuous suppression of all relevant energy scales at H_p(theta,T) should lead to a line of quantum-critical points in the H-theta plane. Finally, we show that the complexity of its magnetic phase-diagram(s) makes CeCu_2Ge_2 an ideal system to explore field-induced quantum tricritical and QC end-points.Comment: 10 pages, 5 figures, Phys. Rev. B (in press
    corecore