10 research outputs found

    Regulation of nucleoside diphosphate kinase and secretable virulence factors in Pseudomonas aeruginosa: roles of algR2 and algH.

    No full text
    Alginate is an important virulence factor for Pseudomonas aeruginosa during infection of the lungs of cystic fibrosis patients. The genes encoding enzymes for alginate production by P. aeruginosa are normally silent. They are activated in response to several environmental conditions, including high osmolarity, exposure to ethanol, or long-term growth under conditions of nutrient deprivation. Several genes which participate in the activation of alginate gene promoters have been identified; among these is the algR2 (algQ) gene. AlgR2 is an 18-kDa protein which has been shown to regulate the critical algD gene encoding GDP-mannose dehydrogenase as well as to regulate the levels of a tricarboxylic acid cycle enzyme, i.e., succinyl coenzyme A synthetase, and nucleoside diphosphate kinase (Ndk), an enzyme involved in nucleoside triphosphate synthesis. Succinyl coenzyme A synthetase and Ndk form a complex in P. aeruginosa. While algR2 is required for alginate synthesis at 37 degrees C, an algR2 insertion mutant was still able to make alginate slowly at 37 or at 30 degrees C. We used this observation to identify and clone a gene, termed algH. A strain with mutations in both algR2 and algH is unable to produce alginate at either 37 or 30 degrees C, and it is fully defective in Ndk production

    Evidence for Sigma Factor Competition in the Regulation of Alginate Production by Pseudomonas aeruginosa

    Get PDF
    Alginate overproduction, or mucoidy, plays an important role in the pathogenesis of P. aeruginosa lung infection in cystic fibrosis (CF). Mucoid strains with mucA mutations predominantly populate in chronically-infected patients. However, the mucoid strains can revert to nonmucoidy in vitro through suppressor mutations. We screened a mariner transposon library using CF149, a non-mucoid clinical isolate with a misssense mutation in algU (AlgU(A61V)). The wild type AlgU is a stress-related sigma factor that activates transcription of alginate biosynthesis. Three mucoid mutants were identified with transposon insertions that caused 1) an overexpression of AlgU(A61V), 2) an overexpression of the stringent starvation protein A (SspA), and 3) a reduced expression of the major sigma factor RpoD (σ(70)). Induction of AlgU(A61V) in trans caused conversion to mucoidy in CF149 and PAO1DalgU, suggesting that AlgU(A61V) is functional in activating alginate production. Furthermore, the level of AlgU(A61V) was increased in all three mutants relative to CF149. However, compared to the wild type AlgU, AlgU(A61V) had a reduced activity in promoting alginate production in PAO1ΔalgU. SspA and three other anti-σ(70) orthologues, P. aeruginosa AlgQ, E. coli Rsd, and T4 phage AsiA, all induced mucoidy, suggesting that reducing activity of RpoD is linked to mucoid conversion in CF149. Conversely, RpoD overexpression resulted in suppression of mucoidy in all mucoid strains tested, indicating that sigma factor competition can regulate mucoidy. Additionally, an RpoD-dependent promoter (P(ssrA)) was more active in non-mucoid strains than in isogenic mucoid variants. Altogether, our results indicate that the anti-σ(70) factors can induce conversion to mucoidy in P. aeruginosa CF149 with algU-suppressor mutation via modulation of RpoD

    Linkage Map of Escherichia coli

    No full text
    corecore