27 research outputs found

    Elevated intracranial pressure and cerebral edema following permanent MCA occlusion in an ovine model

    Get PDF
    INTRODUCTION: Malignant middle cerebral artery (MCA) stroke has a disproportionately high mortality due to the rapid development of refractory space-occupying cerebral edema. Animal models are essential in developing successful anti-edema therapies; however to date poor clinical translation has been associated with the predominately used rodent models. As such, large animal gyrencephalic models of stroke are urgently needed. The aim of the study was to characterize the intracranial pressure (ICP) response to MCA occlusion in our recently developed ovine stroke model. MATERIALS AND METHODS: 30 adult female Merino sheep (n = 8-12/gp) were randomized to sham surgery, temporary or permanent proximal MCA occlusion. ICP and brain tissue oxygen were monitored for 24 hours under general anesthesia. MRI, infarct volume with triphenyltetrazolium chloride (TTC) staining and histology were performed. RESULTS: No increase in ICP, radiological evidence of ischemia within the MCA territory but without space-occupying edema, and TTC infarct volumes of 7.9+/-5.1% were seen with temporary MCAO. Permanent MCAO resulted in significantly elevated ICP, accompanied by 30% mortality, radiological evidence of space-occupying cerebral edema and TTC infarct volumes of 27.4+/-6.4%. CONCLUSIONS: Permanent proximal MCAO in the sheep results in space-occupying cerebral edema, raised ICP and mortality similar to human malignant MCA stroke. This animal model may prove useful for pre-clinical testing of anti-edema therapies that have shown promise in rodent studies.Adam J. Wells, Robert Vink, Stephen C. Helps, Steven J. Knox, Peter C. Blumbergs, Renée J. Turne

    Anaesthetic-related neuroprotection: intravenous or inhalational agents?

    No full text
    In designing the anaesthetic plan for patients undergoing surgery, the choice of anaesthetic agent may often appear irrelevant and the best results obtained by the use of a technique or a drug with which the anaesthesia care provider is familiar. Nevertheless, in those surgical procedures (cardiopulmonary bypass, carotid surgery and cerebral aneurysm surgery) and clinical situations (subarachnoid haemorrhage, stroke, brain trauma and postcardiac arrest resuscitation) where protecting the CNS is a priority, the choice of anaesthetic drug assumes a fundamental role. Treating patients with a neuroprotective agent may be a consideration in improving overall neurological outcome. Therefore, a clear understanding of the relative degree of protection provided by various agents becomes essential in deciding on the most appropriate anaesthetic treatment geared to these objectives. This article surveys the current literature on the effects of the most commonly used anaesthetic drugs (volatile and gaseous inhalation, and intravenous agents) with regard to their role in neuroprotection. A systematic search was performed in the MEDLINE, Cumulative Index to Nursing and Allied Health Literature (CINHAL) and Cochrane Library databases using the following keywords: \u2018brain\u2019 (with the limits \u2018newborn\u2019 or \u2018infant\u2019 or \u2018child\u2019 or \u2018neonate\u2019 or \u2018neonatal\u2019 or \u2018animals\u2019) AND \u2018neurodegeneration\u2019 or \u2018apoptosis\u2019 or \u2018toxicity\u2019 or \u2018neuroprotection\u2019 in combination with individual drug names (\u2018halothane\u2019, \u2018isoflurane\u2019, \u2018desflurane\u2019, \u2018sevoflurane\u2019, \u2018nitrous oxide\u2019, \u2018xenon\u2019, \u2018barbiturates\u2019, \u2018thiopental\u2019, \u2018propofol\u2019, \u2018ketamine\u2019). Over 600 abstracts for articles published from January 1980 to April 2010, including studies in animals, humans and in vitro, were examined, but just over 100 of them were considered and reviewed for quality. Taken as a whole, the available data appear to indicate that anaesthetic drugs such as barbiturates, propofol, xenon and most volatile anaesthetics (halothane, isoflurane, desflurane, sevoflurane) show neuroprotective effects that protect cerebral tissue from adverse events \u2013 such as apoptosis, degeneration, inflammation and energy failure \u2013 caused by chronic neurodegenerative diseases, ischaemia, stroke or nervous system trauma. Nevertheless, in several studies, the administration of gaseous, volatile and intravenous anaesthetics (especially isoflurane and ketamine) was also associated with dosedependent and exposure time-dependent neurodegenerative effects in the developing animal brain. At present, available experimental data do not Approval for publication Signed Date Number of amended pages returned LEADING ARTICLE CNS Drugs 2010; 24 (11): 1-15 1172-7047/10/0011-0001/$49.95/0 \uaa 2010 Adis Data Information BV. All rights reserved. AUTHOR PROOF support the selection of any one anaesthetic agent over the others. Furthermore, the relative benefit of one anaesthetic versus another, with regard to neuroprotective potential, is unlikely to form a rational basis for choice. Each drug has some undesirable adverse effects that, together with the patient\u2019s medical and surgical history, appear to be decisive in choosing the most suitable anaesthetic agent for a specific situation. Moreover, it is important to highlight that many of the studies in the literature have been conducted in animals or in vitro; hence, results and conclusions of most of them may not be directly applied to the clinical setting. For these reasons, and given the serious implications for public health, we believe that further investigation \u2013 geared mainly to clarifying the complex interactions between anaesthetic drug actions and specific mechanisms involved in brain injury, within a setting as close as possible to the clinical situation \u2013 is imperative

    Anaesthetic-related neuroprotection: intravenous or inhalational agents?

    No full text
    In designing the anaesthetic plan for patients undergoing surgery, the choice of anaesthetic agent may often appear irrelevant and the best results obtained by the use of a technique or a drug with which the anaesthesia care provider is familiar. Nevertheless, in those surgical procedures (cardiopulmonary bypass, carotid surgery and cerebral aneurysm surgery) and clinical situations (subarachnoid haemorrhage, stroke, brain trauma and post-cardiac arrest resuscitation) where protecting the CNS is a priority, the choice of anaesthetic drug assumes a fundamental role. Treating patients with a neuroprotective agent may be a consideration in improving overall neurological outcome. Therefore, a clear understanding of the relative degree of protection provided by various agents becomes essential in deciding on the most appropriate anaesthetic treatment geared to these objectives. This article surveys the current literature on the effects of the most commonly used anaesthetic drugs (volatile and gaseous inhalation, and intravenous agents) with regard to their role in neuroprotection. A systematic search was performed in the MEDLINE, Cumulative Index to Nursing and Allied Health Literature (CINHAL®) and Cochrane Library databases using the following keywords: 'brain' (with the limits 'newborn' or 'infant' or 'child' or 'neonate' or 'neonatal' or 'animals') AND 'neurodegeneration' or 'apoptosis' or 'toxicity' or 'neuroprotection' in combination with individual drug names ('halothane', 'isoflurane', 'desflurane', 'sevoflurane', 'nitrous oxide', 'xenon', 'barbiturates', 'thiopental', 'propofol', 'ketamine'). Over 600 abstracts for articles published from January 1980 to April 2010, including studies in animals, humans and in vitro, were examined, but just over 100 of them were considered and reviewed for quality. Taken as a whole, the available data appear to indicate that anaesthetic drugs such as barbiturates, propofol, xenon and most volatile anaesthetics (halothane, isoflurane, desflurane, sevoflurane) show neuroprotective effects that protect cerebral tissue from adverse events--such as apoptosis, degeneration, inflammation and energy failure--caused by chronic neurodegenerative diseases, ischaemia, stroke or nervous system trauma. Nevertheless, in several studies, the administration of gaseous, volatile and intravenous anaesthetics (especially isoflurane and ketamine) was also associated with dose-dependent and exposure time-dependent neurodegenerative effects in the developing animal brain. At present, available experimental data do not support the selection of any one anaesthetic agent over the others. Furthermore, the relative benefit of one anaesthetic versus another, with regard to neuroprotective potential, is unlikely to form a rational basis for choice. Each drug has some undesirable adverse effects that, together with the patient's medical and surgical history, appear to be decisive in choosing the most suitable anaesthetic agent for a specific situation. Moreover, it is important to highlight that many of the studies in the literature have been conducted in animals or in vitro; hence, results and conclusions of most of them may not be directly applied to the clinical setting. For these reasons, and given the serious implications for public health, we believe that further investigation--geared mainly to clarifying the complex interactions between anaesthetic drug actions and specific mechanisms involved in brain injury, within a setting as close as possible to the clinical situation--is imperative

    Transcranial Doppler and anesthetics

    No full text
    Transcranial Doppler (TCD) is widely used to investigate the effects of anesthetic drugs on cerebral blood flow. Its repeatability and non-invasivity makes it an ideal, first choice method. Anesthesia providers are required to be conscious of the cerebral hemodynamic effects of drugs given in their practice, especially in neurosurgery and in subjects with impaired brain functions. The purpose of this review is to present the basic concepts of the TCD technique and the effects on cerebral hemodynamics of the most popular anesthetic drugs evaluated using TCD ultrasonography

    Cholinergic central system, Alzheimer's disease, and anesthetics liaison: a vicious circle?

    No full text
    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation and aggregation of amyloid-\u3b2 peptide and loss of forebrain cholinergic neurons, resulting in progressive loss of memory and irreversible impairment of higher cognitive functions. Several studies have accounted for the close relationship between AD and the central cholinergic system, suggesting that a dysfunction of acetylcholine containing neurons in the brain contributes significantly to the cognitive deficit of individuals with AD. The aim of the present review is to survey current literature on this topic in order to provide a clear understanding of the role of the cholinergic system in the development and neurodegenerative process of AD. The implications for anesthesia are also discussed. This knowledge could be valuable to improve anesthesia performance and patient safety
    corecore