22 research outputs found

    Matrix solitons solutions of the modified korteweg–de vries equation

    No full text
    Nonlinear non-Abelian Korteweg-de Vries (KdV) and modified Korteweg-de Vries (mKdV) equations and their links via Baecklund transformations are considered. The focus is on the construction of soliton solutions admitted by matrix modified Korteweg-de Vries equations. Matrix equation can be viewed as a specialisation of operator equations in the finite dimensional case when operators are finite dimensional and, hence, admit a matrix representation. Baecklund transformations allow to reveal structural properties [S. Carillo and C. Schiebold, J. Math. Phys. 50 (2009), 073510] enjoyed by non-commutative KdV- type equations, such as the existence of a recursion operator. Operator methods are briefly recalled aiming to show how they can be applied to construct soliton solutions. These methods, combined with Baecklund transformations, allow to obtain solutions of matrix soliton equations. Explicit solution formulae previously constructed [C. Schiebold, Glasgow Math. J. 51, 147-155 (2009)], [S. Carillo and C. Schiebold, J. Math. Phys. 52 (2011), 053507] are used to obtain 2 x 2 and 3 x 3 matrix mKdV solutions. Some of these matrix solutions are visualised to show the solitonic behaviour they exhibit

    Besprechungen

    No full text

    Closed form Solutions to the Integrable Discrete Nonlinear Schrödinger Equation

    No full text
    In this article we derive explicit solutions of the matrix integrable discrete nonlinear Schrödinger equation by using the inverse scattering transform and the Marchenko method. The Marchenko equation is solved by separation of variables, where the Marchenko kernel is represented in separated form, using a matrix triplet (A, B, C). Here A has only eigenvalues of modulus larger than one. The class of solutions obtained contains the N-soliton and breather solutions as special cases. We also prove that these solutions reduce to known continuous matrix NLS solutions as the discretization step vanishes

    On the Recursion Operator for the Noncommutative Burgers Hierarchy

    No full text
    The noncommutative Burgers recursion operator is constructed via the Cole–Hopf transformation, and its structural properties are studied. In particular, a direct proof of its hereditary property is given
    corecore