126 research outputs found

    Lactoferrin is a survival factor for neutrophils in rheumatoid synovial fluid

    Get PDF
    Objectives. Lactoferrin is an iron-binding protein that is released from activated neutrophils at sites of inflammation and has anti-microbial as well as anti-inflammatory properties. This study set out to determine whether lactoferrin can delay neutrophil apoptosis and could act as a survival factor for neutrophils in SF

    Expression of FcRL4 defines a pro-inflammatory, RANKL-producing B cell subset in rheumatoid arthritis

    Get PDF
    OBJECTIVES: The success of B cell targeting therapies has highlighted the importance of B cells in rheumatoid arthritis pathogenesis. We have previously shown that B cells in the RA synovium are capable of producing pro-inflammatory and bone-destructive cytokines including RANKL. Here we sought to characterise the nature and functional relevance of the RANKL-producing B cell subset in the RA synovium. METHODS: Synovial fluid and peripheral blood B cells from patients with RA were analysed by flow cytometry for markers of B cell differentiation and activation and for chemokine receptors. FcRL4(+) and FcRL4(−) B cells sorted from synovial fluid were analysed for cytokine expression using Taqman low-density arrays. Synovial tissue biopsies obtained from patients with RA were analysed by immunofluorescence for CD20, RANKL and FcRL4. FCRL4 mRNA expression was determined in synovial tissue of RA patients and non-inflammatory control subjects by real-time PCR. RESULTS: RANKL-producing B cells in RA synovial tissue and fluid were identified as belonging to a distinct subset of B cells defined by expression of the transmembrane protein FcRL4. FcRL4+ B cells express a distinct combination of cytokines and surface proteins indicating a function distinct from that of FcRL4− B cells. Notably, FcRL4+ B cells expressed high levels of TNF-α and RANKL mRNA. CONCLUSIONS: We have identified a novel pro-inflammatory B cell population in the RA synovium which is defined by expression of FcRL4 and responsible for RANKL production. This B cell population expresses high levels of CD20, and its removal by rituximab may contribute to the anti-inflammatory effect of this drug

    Synovial fluid leukocyte apoptosis is inhibited in patients with very early rheumatoid arthritis

    Get PDF
    Synovial leukocyte apoptosis is inhibited in established rheumatoid arthritis (RA). In contrast, high levels of leukocyte apoptosis are seen in self-limiting crystal arthritis. The phase in the development of RA at which the inhibition of leukocyte apoptosis is first apparent, and the relationship between leukocyte apoptosis in early RA and other early arthritides, has not been defined. We measured synovial fluid leukocyte apoptosis in very early arthritis and related this to clinical outcome. Synovial fluid was obtained at presentation from 81 patients with synovitis of ≤ 3 months duration. The percentages of apoptotic neutrophils and lymphocytes were assessed on cytospin preparations. Patients were assigned to diagnostic groups after 18 months follow-up. The relationship between leukocyte apoptosis and patient outcome was assessed. Patients with early RA had significantly lower levels of neutrophil apoptosis than patients who developed non-RA persistent arthritis and those with a resolving disease course. Similarly, lymphocyte apoptosis was absent in patients with early RA whereas it was seen in patients with other early arthritides. The inhibition of synovial fluid leukocyte apoptosis in the earliest clinically apparent phase of RA distinguishes this from other early arthritides. The mechanisms for this inhibition may relate to the high levels of anti-apoptotic cytokines found in the early rheumatoid joint (e.g. IL-2, IL-4, IL-15 GMCSF, GCSF). It is likely that this process contributes to an accumulation of leukocytes in the early rheumatoid lesion and is involved in the development of the microenvironment required for persistent RA

    Interaction between integrin α9β1 and vascular cell adhesion molecule-1 (VCAM-1) inhibits neutrophil apoptosis

    Get PDF
    According to the prevailing paradigm, neutrophils are short-lived cells that undergo spontaneous apoptosis within 24 hours of their release from the bone marrow. However, neutrophil survival can be significantly prolonged within inflamed tissue by cytokines, inflammatory mediators, and hypoxia. During screening experiments aimed at identifying the effect of the adhesive microenvironment on neutrophil survival, we found that VCAM-1 (CD106) was able to delay both spontaneous and Fas-induced apoptosis. VCAM-1-mediated survival was as efficient as that induced by the cytokine IFN-β and provided an additive, increased delay in apoptosis when given in combination with IFN-β. VCAM-1 delivered its antiapoptotic effect through binding the integrin α9β1. The α9β 1 signaling pathway shares significant features with the IFN-β survival signaling pathway, requiring PI3 kinase, NF-κB activation, as well as de novo protein synthesis, but the kinetics of NF-κB activation by VCAM-1 were slower and more sustained compared with IFN-β. This study demonstrates a novel functional role for α9β1 in neutrophil biology and suggests that adhesive signaling pathways provide an important extrinsic checkpoint for the resolution of inflammatory responses in tissues

    Expression of chemokines CXCL4 and CXCL7 by synovial macrophages defines an early stage of rheumatoid athritis

    Get PDF
    BACKGROUND AND OBJECTIVES: For our understanding of the pathogenesis of rheumatoid arthritis (RA), it is important to elucidate the mechanisms underlying early stages of synovitis. Here, synovial cytokine production was investigated in patients with very early arthritis. METHODS: Synovial biopsies were obtained from patients with at least one clinically swollen joint within 12 weeks of symptom onset. At an 18-month follow-up visit, patients who went on to develop RA, or whose arthritis spontaneously resolved, were identified. Biopsies were also obtained from patients with RA with longer symptom duration (>12 weeks) and individuals with no clinically apparent inflammation. Synovial mRNA expression of 117 cytokines was quantified using PCR techniques and analysed using standard and novel methods of data analysis. Synovial tissue sections were stained for CXCL4, CXCL7, CD41, CD68 and von Willebrand factor. RESULTS: A machine learning approach identified expression of mRNA for CXCL4 and CXCL7 as potentially important in the classification of early RA versus resolving arthritis. mRNA levels for these chemokines were significantly elevated in patients with early RA compared with uninflamed controls. Significantly increased CXCL4 and CXCL7 protein expression was observed in patients with early RA compared with those with resolving arthritis or longer established disease. CXCL4 and CXCL7 co-localised with blood vessels, platelets and CD68(+) macrophages. Extravascular CXCL7 expression was significantly higher in patients with very early RA compared with longer duration RA or resolving arthritis CONCLUSIONS: Taken together, these observations suggest a transient increase in synovial CXCL4 and CXCL7 levels in early RA

    Cyclin-Dependent Kinase 9 Activity Regulates Neutrophil Spontaneous Apoptosis

    Get PDF
    Neutrophils are the most abundant leukocyte and play a central role in the immune defense against rapidly dividing bacteria. However, they are also the shortest lived cell in the blood with a lifespan in the circulation of 5.4 days. The mechanisms underlying their short lifespan and spontaneous entry into apoptosis are poorly understood. Recently, the broad range cyclin-dependent kinase (CDK) inhibitor R-roscovitine was shown to increase neutrophil apoptosis, implicating CDKs in the regulation of neutrophil lifespan. To determine which CDKs were involved in regulating neutrophil lifespan we first examined CDK expression in human neutrophils and found that only three CDKs: CDK5, CDK7 and CDK9 were expressed in these cells. The use of CDK inhibitors with differing selectivity towards the various CDKs suggested that CDK9 activity regulates neutrophil lifespan. Furthermore CDK9 activity and the expression of its activating partner cyclin T1 both declined as neutrophils aged and entered apoptosis spontaneously. CDK9 is a component of the P-TEFb complex involved in transcriptional regulation and its inhibition will preferentially affect proteins with short half-lives. Treatment of neutrophils with flavopiridol, a potent CDK9 inhibitor, increased apoptosis and caused a rapid decline in the level of the anti-apoptotic protein Mcl-1, whilst Bcl2A was unaffected. We propose that CDK9 activity is a key regulator of neutrophil lifespan, preventing apoptosis by maintaining levels of short lived anti-apoptotic proteins such as Mcl-1. Furthermore, as inappropriate inhibition of neutrophil apoptosis contributes to chronic inflammatory diseases such as Rheumatoid Arthritis, CDK9 represents a novel therapeutic target in such diseases

    Autoreactivity to malondialdehyde-modifications in rheumatoid arthritis is linked to disease activity and synovial pathogenesis

    Full text link
    Oxidation-associated malondialdehyde (MDA) modification of proteins can generate immunogenic neo-epitopes that are recognized by autoantibodies. In health, IgM antibodies to MDA-adducts are part of the natural antibody pool, while elevated levels of IgG anti-MDA are associated with inflammatory conditions. Yet, in human autoimmune disease IgG anti-MDA responses have not been well characterized and their potential contribution to disease pathogenesis is not known. Here, we investigate MDA-modifications and anti-MDA-modified protein autoreactivity in rheumatoid arthritis (RA). While RA is primarily associated with autoreactivity to citrullinated antigens, we also observed increases in serum IgG anti-MDA in RA patients compared to controls. IgG anti-MDA levels significantly correlated with disease activity by DAS28-ESR and serum TNF-alpha, IL-6, and CRP. Mass spectrometry analysis of RA synovial tissue identified MDA-modified proteins and revealed shared peptides between MDA-modified and citrullinated actin and vimentin. Furthermore, anti-MDA autoreactivity among synovial B cells was discovered when investigating recombinant monoclonal antibodies (mAbs) cloned from single B cells. Several clones were highly specific for MDA-modification with no cross-reactivity to other antigen modifications. The mAbs recognized MDA-adducts in a variety of proteins. Interestingly, the most reactive clone, originated from an IgG1-bearing memory B cell, was encoded by germline variable genes, and showed similarity to previously reported natural IgM. Other anti-MDA clones display somatic hypermutations and lower reactivity. These anti-MDA antibodies had significant in vitro functional properties and induced enhanced osteoclastogenesis, while the natural antibody related high-reactivity clone did not. We postulate that these may represent distinctly different facets of anti-MDA autoreactive responses

    DKK1 expression by synovial fibroblasts in very early rheumatoid arthritis associates with lymphocyte adhesion in an in vitro flow co-culture system

    Get PDF
    BACKGROUND: Synovial fibroblasts play a key role in joint destruction and regulation of the inflammatory infiltrate in established rheumatoid arthritis (RA). The mechanisms by which this occurs in the earliest stages of RA are largely unknown. We investigated the role of Dickkopf-related protein 1 (DKK1) produced by synovial fibroblasts of patients with very early rheumatoid arthritis (VeRA). METHODS: Fibroblasts were isolated from the disease-modifying anti-rheumatic drug–naive Birmingham early arthritis cohort of patients with new onset of clinically apparent arthritis and inflammatory symptoms of ≤12 weeks’ duration, who at follow-up had either resolving arthritis or RA. Endothelial fibroblast co-cultures were formed using porous filters, and lymphocyte adhesion to co-cultures was assessed using phase-contrast microscopy. DKK1 gene expression and secretion were quantified by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. RESULTS: Synovial fibroblasts from patients with VeRA expressed significantly higher levels of DKK1 messenger RNA than those from patients with resolving arthritis. A similar trend was observed for DKK1 protein secretion. In co-culture constructs, more DKK1 tended to be secreted in co-cultures incorporating fibroblasts from VeRA than in co-cultures from non-inflamed joints and resolving arthritis. DKK1 secretion during co-culture positively correlated with lymphocyte adhesion. CONCLUSIONS: Alterations in DKK1 could be involved in the pathogenesis and perpetuation of the inflammatory response in the earliest clinically apparent stages of RA
    corecore