30 research outputs found

    Too anxious to control : the relation between math anxiety and inhibitory control processes

    Get PDF
    Based on the attentional control theory, math anxiety has been explained in terms of impaired inhibition, a key cognitive control function associated with the central executive. Inhibition allows us to suppress task-irrelevant interference when needed. Inspired by the Dual Mechanisms of Control theory, the current study aimed to disentangle the effect of math anxiety on two cognitive control aspects that can be identified in inhibition. Reactive control occurs after interference is detected and is mostly used in a context where interference is scarce. Proactive control is used to prevent and anticipate interference before it occurs and is preferred in contexts where interference is frequent. We used an arrow flanker task where the proportion of interference was manipulated to stimulate the use of a reactive or proactive control strategy. The results showed that response times on trials containing interference increased with math anxiety, but only in a reactive task context. In a proactive task context response times were not influenced by math anxiety. Our results suggest that math anxiety impairs reactive control. We hypothesize that this finding can be explained by a higher state of distractibility, triggered both by the reactive context and by math anxiety

    Whole number thinking, learning and development: neuro-cognitive, cognitive and developmental approaches

    Get PDF
    The participants of working group 2 presented a broad range of studies, 11 papers in total, related to whole number learning representing research groups from 11 countries as follows. Two large cross-sectional studies focused on developmental aspects of young children’s number learning provide a lens for re-examining ‘traditional’ features of number acquisition. van den Heuvel-Panhuizen (the Netherlands) presented a co-authored paper with Elia (Cyprus; Elia and van den Heuvel-Panhuizen 2015) on a cross-cultural study of kindergartners’ number competence focused on counting, additive and multiplicative thinking. Second, Milinković (2015) examined the development of young Serbian children’s initial understanding of representations of whole numbers and counting strategies in a large study of 3- to 7-year-olds. Children’s invented (formal) representations such as set representation and the number line were found to be limited in their recordings. In a South African study focused on early counting and addition, Roberts (2015) directs attention to the role of teachers by providing a framework to support teachers’ interpretation of young disadvantaged learners’ representations of number when engaging with whole number additive tasks. Some papers reflected the increasing role of neuroscientific concepts and methodologies utilised in research on WNA learning and development. Sinclair and Coles (2015) drew upon neuroscientific research to highlight the significant role of symbol-to-symbol connections and the use of fingers and touch counting exempli- fied by the TouchCounts iPad app. Gould (2015) reported aspects of a large Australian large study of children in the first years of schooling aimed at improving numeracy and literacy in disadvantaged communities. A case study exemplified how numerals were identified by relying on a mental number line by using location to retrieve number names. This raised the question addressed in the neuroscientific work of Dehaene and other papers focused on individual differences in how the brain processes numbers. The Italian PerContare1 project (Baccaglini-Frank 2015) built upon the collaboration between cognitive psychologists and mathematics educators, aimed at developing teaching strategies for preventing and addressing early low achievement in arithmetic. It takes an innovative approach to the development of number sense that is grounded upon a kinaesthetic and visual-spatial approach to part-whole relationships. Mulligan and Woolcott (2015) provided a discussion paper on the underlying nature of number. They presented a broader view of mathematics learning (including WNA) as linked to spatial interaction with the environment; the concept of connectivity across concepts and the development of underlying pattern and structural relationships are central to their approach

    Making Sense of the Relation Between Number Sense and Math

    No full text
    While several studies have shown that the performance on numerosity comparison tasks is related to individual differences in math abilities, others have failed to find such a link. These inconsistencies could be due to variations in which math was assessed, different stimulus generation protocols for the numerosity comparison task, or differences in inhibitory control. This within-subject study is a conceptual replication tapping into the relation between numerosity comparison, math, and inhibition in adults (N = 122). Three aspects of math ability were measured using standardized assessments: Arithmetic fluency, calculation, and applied problem solving skills. Participants’ inhibitory skills were measured using Stroop and Go/No-Go tasks with numerical and non-numerical stimuli. Finally, non-symbolic number sense was measured using two different versions of a numerosity comparison task that differed in the stimulus generation protocols (Panamath; Halberda, Mazzocco & Feigenson, 2008, https://doi.org/10.1038/nature07246; G&R, Gebuis & Reynvoet, 2011, https://doi.org/10.3758/s13428-011-0097-5). We find that performance on the Panamath task, but not the G&R task, related to measures of calculation and applied problem solving but not arithmetic fluency, even when controlling for inhibitory control. One possible explanation is that depending on the characteristics of the stimuli in the numerosity comparison task, the reliance on numerical and non-numerical information may vary and only when performance relies more on numerical representations, a relation with math achievement is found. Our findings help to explain prior mixed findings regarding the link between non-symbolic number sense and math and highlight the need to carefully consider variations in numerosity comparison tasks and math measures
    corecore