2,270 research outputs found

    Optical sensing with Anderson-localised light

    Full text link
    We show that fabrication imperfections in silicon nitride photonic crystal waveguides can be used as a resource to efficiently confine light in the Anderson-localised regime and add functionalities to photonic devices. Our results prove that disorder-induced localisation of light can be utilised to realise an alternative class of high-quality optical sensors operating at room temperature. We measure wavelength shifts of optical resonances as large as 15.2 nm, more than 100 times the spectral linewidth of 0.15\,nm, for a refractive index change of about 0.38. By studying the temperature dependence of the optical properties of the system, we report wavelength shifts of up to about 2 nm and increases of more than a factor 2 in the quality factor of the cavity resonances, when going from room to cryogenic temperatures. Such a device can allow simultaneous sensing of both local contaminants and temperature variations, monitored by tens of optical resonances spontaneously appearing along a single photonic crystal waveguide. Our findings demonstrate the potential of Anderson-localised light in photonic crystals for scalable and efficient optical sensors operating in the visible and near-infrared range of wavelengths.Comment: 10 pages, 3 figure

    Disordered Cellulose-based Nanostructures for Enhanced Light-scattering

    Get PDF
    Cellulose is the most abundant bio-polymer on earth. Cellulose fibres, such as the one extracted form cotton or woodpulp, have been used by humankind for hundreds of years to make textiles and paper. Here we show how, by engineering light matter-interaction, we can optimise light scattering using exclusively cellulose nanocrystals. The produced material is sustainable, biocompatible and, when compared to ordinary microfibre-based paper, it shows enhanced scattering strength (x4) yielding a transport mean free path as low as 3.5 um in the visible light range. The experimental results are in a good agreement with the theoretical predictions obtained with a diffusive model for light propagation

    Sensitivity and spectral control of network lasers

    Get PDF
    Recently, random lasing in complex networks has shown efficient lasing over more than 50 localised modes, promoted by multiple scattering over the underlying graph. If controlled, these network lasers can lead to fast-switching multifunctional light sources with synthesised spectrum. Here, we observe both in experiment and theory high sensitivity of the network laser spectrum to the spatial shape of the pump profile, with some modes for example increasing in intensity by 280% when switching off 7% of the pump beam. We solve the nonlinear equations within the steady state ab-initio laser theory (SALT) approximation over a graph and we show selective lasing of around 90% of the strongest intensity modes, effectively programming the spectrum of the lasing networks. In our experiments with polymer networks, this high sensitivity enables control of the lasing spectrum through non-uniform pump patterns. We propose the underlying complexity of the network modes as the key element behind efficient spectral control opening the way for the development of optical devices with wide impact for on-chip photonics for communication, sensing, and computation
    • …
    corecore