22 research outputs found
Optimality Clue for Graph Coloring Problem
In this paper, we present a new approach which qualifies or not a solution
found by a heuristic as a potential optimal solution. Our approach is based on
the following observation: for a minimization problem, the number of admissible
solutions decreases with the value of the objective function. For the Graph
Coloring Problem (GCP), we confirm this observation and present a new way to
prove optimality. This proof is based on the counting of the number of
different k-colorings and the number of independent sets of a given graph G.
Exact solutions counting problems are difficult problems (\#P-complete).
However, we show that, using only randomized heuristics, it is possible to
define an estimation of the upper bound of the number of k-colorings. This
estimate has been calibrated on a large benchmark of graph instances for which
the exact number of optimal k-colorings is known. Our approach, called
optimality clue, build a sample of k-colorings of a given graph by running many
times one randomized heuristic on the same graph instance. We use the
evolutionary algorithm HEAD [Moalic et Gondran, 2018], which is one of the most
efficient heuristic for GCP. Optimality clue matches with the standard
definition of optimality on a wide number of instances of DIMACS and RBCII
benchmarks where the optimality is known. Then, we show the clue of optimality
for another set of graph instances. Optimality Metaheuristics Near-optimal
On the KŁR conjecture in random graphs
The KŁR conjecture of Kohayakawa, Łuczak, and Rödl is a statement that allows one to prove that asymptotically almost surely all subgraphs of the random graph Gn,p, for sufficiently large p := p(n), satisfy an embedding lemma which complements the sparse regularity lemma of Kohayakawa and Rödl. We prove a variant of this conjecture which is sufficient for most known applications to random graphs. In particular, our result implies a number of recent probabilistic versions, due to Conlon, Gowers, and Schacht, of classical extremal combinatorial theorems. We also discuss several further applications.</p
Radial variation of analytic functions with non-tangential boundary limits almost everywhere
On the KLR conjecture in random graphs
The K{\L}R conjecture of Kohayakawa, {\L}uczak, and R\"odl is a statement
that allows one to prove that asymptotically almost surely all subgraphs of the
random graph G_{n,p}, for sufficiently large p : = p(n), satisfy an embedding
lemma which complements the sparse regularity lemma of Kohayakawa and R\"odl.
We prove a variant of this conjecture which is sufficient for most known
applications to random graphs. In particular, our result implies a number of
recent probabilistic versions, due to Conlon, Gowers, and Schacht, of classical
extremal combinatorial theorems. We also discuss several further applications.Comment: 33 page
