22 research outputs found

    Optimality Clue for Graph Coloring Problem

    Full text link
    In this paper, we present a new approach which qualifies or not a solution found by a heuristic as a potential optimal solution. Our approach is based on the following observation: for a minimization problem, the number of admissible solutions decreases with the value of the objective function. For the Graph Coloring Problem (GCP), we confirm this observation and present a new way to prove optimality. This proof is based on the counting of the number of different k-colorings and the number of independent sets of a given graph G. Exact solutions counting problems are difficult problems (\#P-complete). However, we show that, using only randomized heuristics, it is possible to define an estimation of the upper bound of the number of k-colorings. This estimate has been calibrated on a large benchmark of graph instances for which the exact number of optimal k-colorings is known. Our approach, called optimality clue, build a sample of k-colorings of a given graph by running many times one randomized heuristic on the same graph instance. We use the evolutionary algorithm HEAD [Moalic et Gondran, 2018], which is one of the most efficient heuristic for GCP. Optimality clue matches with the standard definition of optimality on a wide number of instances of DIMACS and RBCII benchmarks where the optimality is known. Then, we show the clue of optimality for another set of graph instances. Optimality Metaheuristics Near-optimal

    Knowledge management in future organizations

    Get PDF
    publishedVersio

    A note on radial variation of analytic functions

    Full text link

    On Derivatives of Multipliers of Fractional Cauchy Transforms

    Full text link

    On the KŁR conjecture in random graphs

    No full text
    The KŁR conjecture of Kohayakawa, Łuczak, and Rödl is a statement that allows one to prove that asymptotically almost surely all subgraphs of the random graph Gn,p, for sufficiently large p := p(n), satisfy an embedding lemma which complements the sparse regularity lemma of Kohayakawa and Rödl. We prove a variant of this conjecture which is sufficient for most known applications to random graphs. In particular, our result implies a number of recent probabilistic versions, due to Conlon, Gowers, and Schacht, of classical extremal combinatorial theorems. We also discuss several further applications.</p

    On the KLR conjecture in random graphs

    No full text
    The K{\L}R conjecture of Kohayakawa, {\L}uczak, and R\"odl is a statement that allows one to prove that asymptotically almost surely all subgraphs of the random graph G_{n,p}, for sufficiently large p : = p(n), satisfy an embedding lemma which complements the sparse regularity lemma of Kohayakawa and R\"odl. We prove a variant of this conjecture which is sufficient for most known applications to random graphs. In particular, our result implies a number of recent probabilistic versions, due to Conlon, Gowers, and Schacht, of classical extremal combinatorial theorems. We also discuss several further applications.Comment: 33 page
    corecore