303 research outputs found
Conservation Laws in a First Order Dynamical System of Vortices
Gauge invariant conservation laws for the linear and angular momenta are
studied in a certain 2+1 dimensional first order dynamical model of vortices in
superconductivity. In analogy with fluid vortices it is possible to express the
linear and angular momenta as low moments of vorticity. The conservation laws
are compared with those obtained in the moduli space approximation for vortex
dynamics.Comment: LaTex file, 16 page
Hypersurface Bohm-Dirac models
We define a class of Lorentz invariant Bohmian quantum models for N entangled
but noninteracting Dirac particles. Lorentz invariance is achieved for these
models through the incorporation of an additional dynamical space-time
structure provided by a foliation of space-time. These models can be regarded
as the extension of Bohm's model for N Dirac particles, corresponding to the
foliation into the equal-time hyperplanes for a distinguished Lorentz frame, to
more general foliations. As with Bohm's model, there exists for these models an
equivariant measure on the leaves of the foliation. This makes possible a
simple statistical analysis of position correlations analogous to the
equilibrium analysis for (the nonrelativistic) Bohmian mechanics.Comment: 17 pages, 3 figures, RevTex. Completely revised versio
On field theory quantization around instantons
With the perspective of looking for experimentally detectable physical
applications of the so-called topological embedding, a procedure recently
proposed by the author for quantizing a field theory around a non-discrete
space of classical minima (instantons, for example), the physical implications
are discussed in a ``theoretical'' framework, the ideas are collected in a
simple logical scheme and the topological version of the Ginzburg-Landau theory
of superconductivity is solved in the intermediate situation between type I and
type II superconductors.Comment: 27 pages, 5 figures, LaTe
Simulating causal collapse models
We present simulations of causal dynamical collapse models of field theories
on a 1+1 null lattice. We use our simulations to compare and contrast two
possible interpretations of the models, one in which the field values are real
and the other in which the state vector is real. We suggest that a procedure of
coarse graining and renormalising the fundamental field can overcome its
noisiness and argue that this coarse grained renormalised field will show
interesting structure if the state vector does on the coarse grained scale.Comment: 18 pages, 8 fugures, LaTeX, Reference added, discussion of
probability distribution of labellings correcte
Slow Schroedinger dynamics of gauged vortices
Multivortex dynamics in Manton's Schroedinger--Chern--Simons variant of the
Landau-Ginzburg model of thin superconductors is studied within a moduli space
approximation. It is shown that the reduced flow on M_N, the N vortex moduli
space, is hamiltonian with respect to \omega_{L^2}, the L^2 Kaehler form on
\M_N. A purely hamiltonian discussion of the conserved momenta associated with
the euclidean symmetry of the model is given, and it is shown that the
euclidean action on (M_N,\omega_{L^2}) is not hamiltonian. It is argued that
the N=3 flow is integrable in the sense of Liouville. Asymptotic formulae for
\omega_{L^2} and the reduced Hamiltonian for large intervortex separation are
conjectured. Using these, a qualitative analysis of internal 3-vortex dynamics
is given and a spectral stability analysis of certain rotating vortex polygons
is performed. Comparison is made with the dynamics of classical fluid point
vortices and geostrophic vortices.Comment: 22 pages, 2 figure
Expansion for the solutions of the Bogomolny equations on the torus
We show that the solutions of the Bogomolny equations for the Abelian Higgs
model on a two-dimensional torus, can be expanded in powers of a quantity
epsilon measuring the departure of the area from the critical area. This allows
a precise determination of the shape of the solutions for all magnetic fluxes
and arbitrary position of the Higgs field zeroes. The expansion is carried out
to 51 orders for a couple of representative cases, including the unit flux
case. We analyse the behaviour of the expansion in the limit of large areas, in
which case the solutions approach those on the plane. Our results suggest
convergence all the way up to infinite area.Comment: 26 pages, 8 figures, slightly revised version as published in JHE
EPR-Bell Nonlocality, Lorentz Invariance, and Bohmian Quantum Theory
We discuss the problem of finding a Lorentz invariant extension of Bohmian
mechanics. Due to the nonlocality of the theory there is (for systems of more
than one particle) no obvious way to achieve such an extension. We present a
model invariant under a certain limit of Lorentz transformations, a limit
retaining the characteristic feature of relativity, the non-existence of
absolute time resp. simultaneity. The analysis of this model exemplifies an
important property of any Bohmian quantum theory: the quantum equilibrium
distribution cannot simultaneously be realized in all
Lorentz frames of reference.Comment: 24 pages, LaTex, 4 figure
Classical phase space and statistical mechanics of identical particles
Starting from the quantum theory of identical particles, we show how to
define a classical mechanics that retains information about the quantum
statistics. We consider two examples of relevance for the quantum Hall effect:
identical particles in the lowest Landau level, and vortices in the
Chern-Simons Ginzburg-Landau model. In both cases the resulting {\em classical}
statistical mechanics is shown to be a nontrivial classical limit of Haldane's
exclusion statistics.Comment: 40 pages, Late
Time dependent solitons of noncommutative Chern-Simons theory coupled to scalar fields
We study one- and two-soliton solutions of noncommutative Chern-Simons theory
coupled to a nonrelativistic or a relativistic scalar field. In the
nonrelativistic case, we find a tower of new stationary time-dependent
solutions, all with the same charge density, but with increasing energies. The
dynamics of these solitons cannot be studied using traditional moduli space
techniques, but we do find a nontrivial symplectic form on the phase space
indicating that the moduli space is not flat. In the relativistic case we find
the metric on the two soliton moduli space.Comment: 22 pages, 2 figures, JHEP3 style. v2: This paper is a thoroughly
revised version. We thank P.A. Horvathy, L. Martina and P.C. Stichel for
illuminating comments that led us to reconsider some of our previously
reported results; see note added at the end of the paper. v3:
Acknowledgements adde
- …
