704 research outputs found

    A Three Dimensional Analysis of Au-Silica Core-Shell Nanoparticles Using Medium Energy Ion Scattering

    Get PDF
    The medium energy ion scattering (MEIS) facility at the IIAA Huddersfield has been used for the analysis of a monolayer of Au-silica core-shell nanoparticles deposited on Si substrate. Both spherical and rod shape particles were investigated and the spectra produced by 100 keV He+ ions scattered through angles of 90º and 125º were compared with the results of RBS-MAST [1] simulations performed on artificial 3D model cells containing the nanoparticles. The thickness of the silica shell, the diameter of the Au spheres, and the diameter and length of the Au nano-rods were determined from best fits of the measured set of MEIS spectra. In addition, the effect of ion irradiation on the silica shell and gold core was monitored by MEIS measurements in conjunction with RBS-MAST simulations. Ion bombardment was performed under largely different conditions, i.e., by 30 keV Ar+, 150 keV Fe+, or 2.8 MeV N+ ions in the dose range of 2×1015 - 2×1016 cm-2. Significant changes in the particle geometry can be observed due to ion beam-induced sputtering and recoil effects, the significance of which was estimated from full-cascade SRIM simulations. Rutherford backscattering spectrometry (RBS), Field emission scanning electron microscopy (FESEM), and Atomic Force Microscopy (AFM) techniques have been applied as complementary characterization tools to monitor the amount of gold and surface morphology on the un-irradiated and irradiated sample areas. We show that MEIS can yield spatial information on the geometrical changes of particulate systems at the nanometre scale

    Dependence of the flux creep activation energy on current density and magnetic field for MgB2 superconductor

    Get PDF
    Systematic ac susceptibility measurements have been performed on a MgB2_2 bulk sample. We demonstrate that the flux creep activation energy is a nonlinear function of the current density U(j)j0.2U(j)\propto j^{-0.2}, indicating a nonlogarithmic relaxation of the current density in this material. The dependence of the activation energy on the magnetic field is determined to be a power law U(B)B1.33U(B)\propto B^{-1.33}, showing a steep decline in the activation energy with the magnetic field, which accounts for the steep drop in the critical current density with magnetic field that is observed in MgB2_2. The irreversibility field is also found to be rather low, therefore, the pinning properties of this new material will need to be enhanced for practical applications.Comment: 11 pages, 6 figures, Revtex forma

    Resummation in nonlinear equation for high energy factorizable gluon density and its extension to include coherence

    Get PDF
    Motivated by forthcoming p-Pb experiments at Large Hadron Collider which require both knowledge of gluon densities accounting for saturation and for processes at a wide range of ptp_t we study basic momentum space evolution equations of high energy QCD factorization. Solutions of those equations might be used to form a set of gluon densities to calculate observables in generalized high energy factorization. Moreover in order to provide a framework for predictions for exclusive final states in p-Pb scattering with high ptp_t we rewrite the equation for the high energy factorizable gluon density in a resummed form, similarly to what has been done in \cite{Kutak:2011fu} for the BK equation. The resummed equation is then extended to account for colour coherence. This introduces an external scale to the evolution of the gluon density, and therefore makes it applicable in studies of final states.Comment: 14 pages, appendix added, accepted for publication in JHE

    Bispecific PD1-IL2v and anti-PD-L1 break tumor immunity resistance by enhancing stem-like tumor-reactive CD8<sup>+</sup> T cells and reprogramming macrophages.

    Get PDF
    Immunotherapies have shown remarkable, albeit tumor-selective, therapeutic benefits in the clinic. Most patients respond transiently at best, highlighting the importance of understanding mechanisms underlying resistance. Herein, we evaluated the effects of the engineered immunocytokine PD1-IL2v in a mouse model of de novo pancreatic neuroendocrine cancer that is resistant to checkpoint and other immunotherapies. PD1-IL2v utilizes anti-PD-1 as a targeting moiety fused to an immuno-stimulatory IL-2 cytokine variant (IL2v) to precisely deliver IL2v to PD-1 &lt;sup&gt;+&lt;/sup&gt; T cells in the tumor microenvironment. PD1-IL2v elicited substantial infiltration by stem-like CD8 &lt;sup&gt;+&lt;/sup&gt; T cells, resulting in tumor regression and enhanced survival in mice. Combining anti-PD-L1 with PD1-IL2v sustained the response phase, improving therapeutic efficacy both by reprogramming immunosuppressive tumor-associated macrophages and enhancing T cell receptor (TCR) immune repertoire diversity. These data provide a rationale for clinical trials to evaluate the combination therapy of PD1-IL2v and anti-PD-L1, particularly in immunotherapy-resistant tumors infiltrated with PD-1 &lt;sup&gt;+&lt;/sup&gt; stem-like T cells

    On the quark component in prompt photon and electroweak gauge boson production at high energies

    Full text link
    In the framework of the kt-factorization approach, we study the production of prompt photons and electroweak gauge bosons in high energy proton-(anti)proton collisions at modern colliders. Our consideration is based on the amplitude for the production of a single photon or W/Z boson associated with a quark pair in the fusion of two off-shell gluons. The quark component is taken into account separately using the quark-gluon scaterring and quark-antiquark annihilation QCD subprocesses. Special attention is put on the contributions from the quarks involved into the earlier steps of the evolution cascade. Using the Kimber-Martin-Ryskin formalism, we simulate this component and demonstrate that it plays an important role at both the Tevatron and LHC energies. Our theoretical results are compared with recent experimental data taken by the D0 and CDF collaborations at the Tevatron.Comment: 16 pages, 9 figure

    Atomic-scale visualization of initial growth of homoepitaxial SrTiO3 thin film on an atomically ordered substrate

    Full text link
    The initial homoepitaxial growth of SrTiO3 on a (\surd13\times\surd13) - R33.7{\deg}SrTiO3(001) substrate surface, which can be prepared under oxide growth conditions, is atomically resolved by scanning tunneling microscopy. The identical (\surd13\times\surd13) atomic structure is clearly visualized on the deposited SrTiO3 film surface as well as on the substrate. This result indicates the transfer of the topmost Ti-rich (\surd13\times\surd13) structure to the film surface and atomic-scale coherent epitaxy at the film/substrate interface. Such atomically ordered SrTiO3 substrates can be applied to the fabrication of atom-by-atom controlled oxide epitaxial films and heterostructures

    Terahertz underdamped vibrational motion governs protein-ligand binding in solution

    Get PDF
    Low-frequency collective vibrational modes in proteins have been proposed as being responsible for efficiently directing biochemical reactions and biological energy transport. However, evidence of the existence of delocalized vibrational modes is scarce and proof of their involvement in biological function absent. Here we apply extremely sensitive femtosecond optical Kerr-effect spectroscopy to study the depolarized Raman spectra of lysozyme and its complex with the inhibitor triacetylchitotriose in solution. Underdamped delocalized vibrational modes in the terahertz frequency domain are identified and shown to blue-shift and strengthen upon inhibitor binding. This demonstrates that the ligand-binding coordinate in proteins is underdamped and not simply solvent-controlled as previously assumed. The presence of such underdamped delocalized modes in proteins may have significant implications for the understanding of the efficiency of ligand binding and protein–molecule interactions, and has wider implications for biochemical reactivity and biological function

    Lack of Matrilin-2 Favors Liver Tumor Development via Erk1/2 and GSK-3 beta Pathways In Vivo

    Get PDF
    Matrilin-2 (Matn2) is a multidomain adaptor protein which plays a role in the assembly of extracellular matrix (ECM). It is produced by oval cells during stem cell-driven liver regeneration. In our study, the impact of Matn2 on hepatocarcinogenesis was investigated in Matn2(-/-) mice comparing them with wild-type (WT) mice in a diethylnitrosamine (DEN) model. The liver tissue was analyzed macroscopically, histologically and immunohistochemically, at protein level by Proteome Profiler Arrays and Western blot analysis. Matn2(-/-) mice exhibited higher susceptibility to hepatocarcinogenesis compared to wild-type mice. In the liver of Matn2(-/-) mice, spontaneous microscopic tumor foci were detected without DEN treatment. After 15 mu g/g body weight DEN treatment, the liver of Matn2(-/-) mice contained macroscopic tumors of both larger number and size than the WT liver. In contrast with the WT liver, spontaneous phosphorylation of EGFR, Erk1/2 GSK-3 alpha/beta and retinoblastoma protein (p-Rb), decrease in p21/CIP1 level, and increase in beta-Catenin protein expression were detected in Matn2(-/-) livers. Focal Ki-67 positivity of these samples provided additional support to our presumption that the lack of Matn2 drives the liver into a pro-proliferatory state, making it prone to tumor development. This enhanced proliferative capacity was further increased in the tumor nodules of DEN-treated Matn2(-/-) livers. Our study suggests that Matn2 functions as a tumor suppressor in hepatocarcinogenesis, and in this process activation of EGFR together with that of Erk1/2, as well as inactivation of GSK-3 beta, play strategic roles
    corecore