5,713 research outputs found

    Information geometry of density matrices and state estimation

    Full text link
    Given a pure state vector |x> and a density matrix rho, the function p(x|rho)= defines a probability density on the space of pure states parameterised by density matrices. The associated Fisher-Rao information measure is used to define a unitary invariant Riemannian metric on the space of density matrices. An alternative derivation of the metric, based on square-root density matrices and trace norms, is provided. This is applied to the problem of quantum-state estimation. In the simplest case of unitary parameter estimation, new higher-order corrections to the uncertainty relations, applicable to general mixed states, are derived.Comment: published versio

    Efficient Simulation of Quantum State Reduction

    Get PDF
    The energy-based stochastic extension of the Schrodinger equation is a rather special nonlinear stochastic differential equation on Hilbert space, involving a single free parameter, that has been shown to be very useful for modelling the phenomenon of quantum state reduction. Here we construct a general closed form solution to this equation, for any given initial condition, in terms of a random variable representing the terminal value of the energy and an independent Brownian motion. The solution is essentially algebraic in character, involving no integration, and is thus suitable as a basis for efficient simulation studies of state reduction in complex systems.Comment: 4 pages, No Figur

    Inferring Networks of Substitutable and Complementary Products

    Full text link
    In a modern recommender system, it is important to understand how products relate to each other. For example, while a user is looking for mobile phones, it might make sense to recommend other phones, but once they buy a phone, we might instead want to recommend batteries, cases, or chargers. These two types of recommendations are referred to as substitutes and complements: substitutes are products that can be purchased instead of each other, while complements are products that can be purchased in addition to each other. Here we develop a method to infer networks of substitutable and complementary products. We formulate this as a supervised link prediction task, where we learn the semantics of substitutes and complements from data associated with products. The primary source of data we use is the text of product reviews, though our method also makes use of features such as ratings, specifications, prices, and brands. Methodologically, we build topic models that are trained to automatically discover topics from text that are successful at predicting and explaining such relationships. Experimentally, we evaluate our system on the Amazon product catalog, a large dataset consisting of 9 million products, 237 million links, and 144 million reviews.Comment: 12 pages, 6 figure

    Hidden variable interpretation of spontaneous localization theory

    Full text link
    The spontaneous localization theory of Ghirardi, Rimini, and Weber (GRW) is a theory in which wavepacket reduction is treated as a genuine physical process. Here it is shown that the mathematical formalism of GRW can be given an interpretation in terms of an evolving distribution of particles on configuration space similar to Bohmian mechanics (BM). The GRW wavefunction acts as a pilot wave for the set of particles. In addition, a continuous stream of noisy information concerning the precise whereabouts of the particles must be specified. Nonlinear filtering techniques are used to determine the dynamics of the distribution of particles conditional on this noisy information and consistency with the GRW wavefunction dynamics is demonstrated. Viewing this development as a hybrid BM-GRW theory, it is argued that, besides helping to clarify the relationship between the GRW theory and BM, its merits make it worth considering in its own right.Comment: 13 page

    The EPR experiment in the energy-based stochastic reduction framework

    Full text link
    We consider the EPR experiment in the energy-based stochastic reduction framework. A gedanken set up is constructed to model the interaction of the particles with the measurement devices. The evolution of particles' density matrix is analytically derived. We compute the dependence of the disentanglement rate on the parameters of the model, and study the dependence of the outcome probabilities on the noise trajectories. Finally, we argue that these trajectories can be regarded as non-local hidden variables.Comment: 11 pages, 5 figure

    Dynamical state reduction in an EPR experiment

    Full text link
    A model is developed to describe state reduction in an EPR experiment as a continuous, relativistically-invariant, dynamical process. The system under consideration consists of two entangled isospin particles each of which undergo isospin measurements at spacelike separated locations. The equations of motion take the form of stochastic differential equations. These equations are solved explicitly in terms of random variables with a priori known probability distribution in the physical probability measure. In the course of solving these equations a correspondence is made between the state reduction process and the problem of classical nonlinear filtering. It is shown that the solution is covariant, violates Bell inequalities, and does not permit superluminal signaling. It is demonstrated that the model is not governed by the Free Will Theorem and it is argued that the claims of Conway and Kochen, that there can be no relativistic theory providing a mechanism for state reduction, are false.Comment: 19 pages, 3 figure

    REACTIVITY OF CHLOROPHYLL a/b-PROTEINS AND MICELLAR TRITON X-100 COMPLEXES OF CHLOROPHYLLS a OR b WITH BOROHYDRIDE

    Get PDF
    The reaction of several plant chlorophyll-protein complexes with NaBH4 has been studied by absorption spectroscopy. In all the complexes studied, chlorophyll b is more reactive than Chi a, due to preferential reaction of its formyl substituent at C-7. The complexes also show large variations in reactivity towards NaBH4 and the order of reactivity is: LHCI > PSII complex > LHCII > PSI > P700 (investigated as a component of PSI). Differential pools of the same type of chlorophyll have been observed in several complexes. Parallel work was undertaken on the reactivity of micellar complexes of chlorophyll a and of chlorophyll b with NaBH4 to study the effect of aggregation state on this reactivity. In these complexes, both chlorophyll a and b show large variations in reactivity in the order monomer > oligomer > polymer with chlorophyll b generally being more reactive than chlorophyll a. It is concluded that aggregation decreases the reactivity of chlorophylls towards NaBH4 in vitro, and may similarly decrease reactivity in naturally-occurring chlorophyll-protein complexes

    Minimal Impairment in a Rat Model of Duration Discrimination Following Excitotoxic Lesions of Primary Auditory and Prefrontal Cortices

    Get PDF
    We present a behavioral paradigm for the study of duration perception in the rat, and report the result of neurotoxic lesions that have the goal of identifying sites that mediate duration perception. Using a two-alternative forced-choice paradigm, rats were either trained to discriminate durations of pure tones (range = [200,500] ms; boundary = 316 ms; Weber fraction after training = 0.24 ± 0.04), or were trained to discriminate frequencies of pure tones (range = [8,16] kHz; boundary = 11.3 kHz; Weber = 0.16 ± 0.11); the latter task is a control for non-timing-specific aspects of the former. Both groups discriminate the same class of sensory stimuli, use the same motions to indicate decisions, have identical trial structures, and are trained to psychophysical threshold; the tasks are thus matched in a number of sensorimotor and cognitive demands. We made neurotoxic lesions of candidate timing-perception areas in the cerebral cortex of both groups. Following extensive bilateral lesions of the auditory cortex, the performance of the frequency discrimination group was significantly more impaired than that of the duration discrimination group. We also found that extensive bilateral lesions of the medial prefrontal cortex resulted in little to no impairment of both groups. The behavioral framework presented here provides an audition-based approach to study the neural mechanisms of time estimation and memory for durations

    Quantum noise and stochastic reduction

    Full text link
    In standard nonrelativistic quantum mechanics the expectation of the energy is a conserved quantity. It is possible to extend the dynamical law associated with the evolution of a quantum state consistently to include a nonlinear stochastic component, while respecting the conservation law. According to the dynamics thus obtained, referred to as the energy-based stochastic Schrodinger equation, an arbitrary initial state collapses spontaneously to one of the energy eigenstates, thus describing the phenomenon of quantum state reduction. In this article, two such models are investigated: one that achieves state reduction in infinite time, and the other in finite time. The properties of the associated energy expectation process and the energy variance process are worked out in detail. By use of a novel application of a nonlinear filtering method, closed-form solutions--algebraic in character and involving no integration--are obtained for both these models. In each case, the solution is expressed in terms of a random variable representing the terminal energy of the system, and an independent noise process. With these solutions at hand it is possible to simulate explicitly the dynamics of the quantum states of complicated physical systems.Comment: 50 page
    corecore